Energieausweis für Nicht-Wohngebäude

ÖSTERREICHISCHES INSTITUT FÜR BAUTECHNIK

OIB-Richtlinie 6 Ausgabe: März 2015

BEZEICHNUNG	MF_093-2019_Haas			
Gebäude (-teil)	Appartements	Ва	aujahr	1970
Nutzungsprofil	Pensionen	Le	etzte Veränderung	2020
Straße	Reiteregg 28	Ka	atastralgemeinde	Sankt Bartholomä
PLZ, Ort	8151 St.Bartholomä	KC	G-Nummer	63273
Grundstücksnummer	.121; 1202	Se	eehöhe	449,00 m

SPEZIFISCHER STANDORT-REFERENZ-HEIZWÄRMEBEDARF, STANDORT-PRIMÄRENERGIEBEDARF, STANDORT-KOHLENDIOXIDEMISSIONEN und GESAMTENERGIEEFFIZIENZ-FAKTOR HWB_{Ref,SK} PEB_{SK} CO_{2 SK} f_{GEE} A++ A B B B C D E F

HWB_{Ref}: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der **Warmwasserwärmebedarf** ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt

HEB: Beim Heizenergiebedarf werden zusätzliche zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondee die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der Kühlbedarf ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim Befeuchtungsenergiebedarf wird der allfällige Energiebedarf zur Befeuchtung dargestellt.

KEB: Beim Kühlenergiebedarf werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt

BelEB: Der Beleuchtungsenergiebedarf ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung.

BSB: Der Betriebstrombedarf ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerfräge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

f_{GEE}: Der **Gesamtenergieeffizienz-Faktor** ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderungen 2007).

PEB: Der Primärenergiebedarf ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB_{ern}) und einen nicht erneuerbaren (PEB _{n.ern.}) Anteil auf.

 \mathbf{CO}_2 : Gesamte dem Endenergiebedarf zuzurechnende **Kohlendioxidemissionen**, einschließlich jener für Vorketten.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist 2004 – 2008, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Nicht-Wohngebäude

OIB-Richtlinie 6 Ausgabe: März 2015

GEB			

Brutto-Grundfläche	1.035,36 m ²	Charakteristische Länge	2,33 m	Mittlerer U-Wert	0,34 W/(m ² K)
Bezugsfläche	828,29 m ²	Heiztage	174 d	LEK _⊤ -Wert	23,58
Brutto-Volumen	3.848,57 m ³	Heizgradtage	3.672 Kd	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	1.655,09 m ²	Klimaregion	S/SO	Bauweise	schwer
Kompaktheit A/V	0,43 1/m	Norm-Außentemperatur	-12,4 °C	Soll-Innentemperatur	20,0 °C

ANFORDERUNGEN (Referenzklima)

`					
Referenz-Heizwärmebedarf	Anforderung 45,4 kWh/m²a	erfüllt	$HWB_{ref,RK}$	29,8	kWh/m²a
Außeninduzierter Kühlbedarf	Anforderung 1,0 kWh/m³a	erfüllt	KB* _{RK}	0,2	kWh/m³a
End-/Lieferenergiebedarf			E/LEB _{RK}	60,1	kWh/m²a
Gesamtenergieeffizienz-Faktor	Anforderung 0,80	erfüllt	f gee	0,71	
Erneuerbarer Anteil		erfüllt			

WÄRME- und ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	28.725	kWh/a	$HWB_{ref,SK}$	27,7	kWh/m²a
Heizwärmebedarf	28.725	kWh/a	HWBsk	27,7	kWh/m²a
Warmwasserwärmebedarf	13.227	kWh/a	WWWB sk	12,8	kWh/m²a
Heizenergiebedarf	19.810	kWh/a	НЕВsк	19,1	kWh/m²a
Energieaufwandszahl Heizen			e awz,h	0,47	
Kühlbedarf	14.700	kWh/a	KВsк	14,2	kWh/m²a
Kühlenergiebedarf	0	kWh/a	KEBsĸ	0,0	kWh/m²a
Befeuchtungsenergiebedarf	0	kWh/a	BefEВsк	0,0	kWh/m²a
Energieaufwandszahl Kühlen			e awz,ĸ		
Beleuchtungsenergiebedarf	35.824	kWh/a	BelEBsk	34,6	kWh/m²a
Betriebsstrombedarf	17.006	kWh/a	BSBsк	16,4	kWh/m²a
End-/Lieferenergiebedarf	62.887	kWh/a	EEВsк	60,7	kWh/m²a
Primärenergiebedarf	120.114	kWh/a	PEBsk	116,0	kWh/m²a
Primärenergiebedarf nicht erneuerbar	83.011	kWh/a	PEB _{n.ern.,SK}	80,2	kWh/m²a
Primärenergiebedarf erneuerbar	37.103	kWh/a	PEB _{em.,SK}	35,8	kWh/m²a
Kohlendioxidemissionen	17.357	kg/a	CO2sk	16,8	kg/m²a
Gesamtenergieeffizienz-Faktor			f gee,sk	0,71	
Photovoltaik-Export	7.253	kWh/a	$PV_{Export,SK}$	7,0	kWh/m²a

GWR-Zahl Ausstellungsdatum 15.11.2019 Gültigkeitsdatum 15.11.2029 ErstellerIn

Ingenieurbüro DI M. Franke ingenieurbüro für bauphysik & emsygidheratung di martina franke

kaiserweg 10, 8502 lannach 0699/19 22 70 20 office@ibmf.at

Unterschrift

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Anhang zum Energieausweis gemäß OIB Richtlinie 6 (Kapitel 6)

Verwendete Hilfsmittel und ÖNORMen

Gegebenheiten aufgrund von Plänen und Begehung vor Ort Berechnungen basierend auf der OIB-Richtlinie 6 (2015) Klimadaten und Nutzungsprofil nach ÖNORM B 8110-5 Heizwärmebedarf nach ÖNORM B 8110-6 Endenergiebedarf nach ÖNORM H 5056, 5057, 5058, 5059 Primärenergiebedarf und Gesamtenergieeffizienz nach OIB-Richtlinie 6 (Leitfaden)

Anforderungsgrenzwerte nach OIB-Richtlinie 6

Berechnet mit ECOTECH 3.3

Ermittlung der Eingabedaten					
Geometrische Daten	It. Einreichplan vom 03.112019.				
Bauphysikalische Daten	It. Einreichplan vom 03.112019 und unter Absprache mit dem Planer. Fenster: Standardfenster 3-fach verglast mit ISO-Abstandhalter, außer Stiegenhausportale.				
Haustechnik Daten	Erdwärmepumpe. Große PV-Anlage auf dem Dach geplant.				
Weitere Informationen					

Dieser Ausweis umfasst die Appartements. Diese werden als Ferienwohnungen o.ä. genutzt. Top 4 wird als dauerhafte Wohnung genutzt und daher in einem separaten Ausweis ausgewertet. Die Appartements werden komplett erneuert, daher wird der Ausweis als NEUBAU ausgewertet, obwohl die Decken und das Mauerwerk Bestands-Bauteile sind. OG2 und ein Teil von OG1 werden komplett neu errichtet.

Der Schutz vor sommerlicher Überwärmung und Kondensation durch Wärmebrücken ist von der planenden Firma sicher zu stellen und wird nicht durch die Energieausweisberechnerin gewährleistet.

Kommentare

Die vorliegende Berechnung gilt nicht als bauphysikalische Begutachtung. Es wird ausdrücklich darauf hingewiesen, dass bei der Berechnung des Energieausweises keine Überprüfung der Auswirkungen auf den Feuchte-, Schall- und Brandschutz oder die Statik des Gebäudes erfolgt.

Weiters halte ich fest, dass in der Darstellung der Bauteilaufbauten unter Umständen nur die wärmetechnisch relevanten Schichten berücksichtigt werden und fallweise bezüglich Brandschutz, Feuchtigkeitsabdichtung und/oder Diffusionssicherheit zusätzliche Folien, Beschichtungen o.a. erforderlich sind.

Kundenseits ist Sorge zu tragen, dass bei der Ausführung durch die beauftragten Unternehmen die Angaben bezüglich Dämmstärken bzw. U-Werte des Energieausweises zu berücksichtigen sind (verbesserte Aufbauten sind aber möglich). Aufgrund dieses Energieausweises besteht kein Anspruch, auch nicht Dritter, auf Erzielung eines gewissen Energieverbrauches im Betrieb des Gebäudes. Die bautechnische und baurechtliche Eignung der Aufbauten und der angenommenen Baustoffe ist separat von der ausführenden Firma zu prüfen.

Anforderungen gemäß OIB Richtlinie 6								
Spezielle Anforderungen an wärmeübertragende Bauteile (Kapitel 4.6)								
Bauteil	R-Wert [m²K/W]	R-Wert Anforder- ung [m²K/W]	Anforderung					
Wand-, Fußboden-, Deckenheizungen gegen Außenluft	-	4.00						
Wand-, Fußboden-, Deckenheizungen gegen Erde oder unbeheizte Gebäudeteile	-	3.50						
Spezielle Anforderungen an wärmeübertragende Bauteile (Kapitel 4.6)								
4.6 Wand-, Fußboden- und Deckenheizungen	nicht relevant							
4.6 Heizkörper vor transparenten Bauteilen	erfüllt							
Anforderungen an Kondensation / Wärmebrücken, Sommerlichen Überwärmungssch	utz, Luft- und	Winddichte (Kapite	l 4.7, 4.8, 4.9)					
4.7 Kondensation nach ÖNORM B 8110-2, Wärmebrückenvermeidung	nicht relev	ant						
4.8 Sommerliche Überwärmung	nicht relev	ant						
4.9 Luft- und Winddichte (Gebäudehülle)	nicht relev	ant						
Anforderungen an Teile des gebäudetechnischen Syst	ems (Kapitel	5)						
5.1 Wärmerückgewinnung	nicht relevant							
5.2 Hocheffiziente alternative Energiesysteme erfüllt								
5.3 Zentrale Wärmebereitstellungsanlage erfüllt								
5.4 Wärmeverteilung	erfüllt							

MF_093-2019_Haas 15. November 2019 Projekt: Datum:

110jekt. IIII _033-2019_11dd5	Datum	i. 13. 140VCI	
Anforderungen gemäß OIB Richt	tlinie 6		
Anforderungen an wärmeübertragende Bauteile (Kapi	tel 4.5.1)		
Bauteil	U-Wert [W/m²K]	U-Wert Anforder- ung [W/m²K]	Anforderung
Wände gegen Außenluft	0.34	0.35	erfüllt
Wände gegen unbeheizte oder nicht ausgebaute Dachräume	-	0.35	
Wände gegen unbeheizte, frostfrei zu haltende Gebäudeteile (ausgenommen Dachräume) sowie gegen Garagen	-	0.60	
Wände erdberührt	0.37	0.40	erfüllt
Wände (Trennwände) zwischen Wohn- oder Betriebseinheiten	-	0.90	
Wände gegen andere Bauwerke an Grundstücks- bzw. Bauplatzgrenzen	-	0.50	
Wände kleinflächig gegen Außenluft (z.B. bei Gaupen), die 2% der Wände des gesamten Gebäudes gegen Außenluft nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	0.70	
Wände (Zwischenwände) innerhalb Wohn- und Betriebseinheiten	-	-	
Fenster, Fenstertüren, verglaste Türen jeweils in Nicht-Wohngebäuden (NWG) gegen Außenluft (1)	1.40	1.70	erfüllt
Sonstige transparente Bauteile vertikal gegen Außenluft (2)	-	1.70	
Sonstige transparente Bauteile horizontal oder in Schrägen gegen Außenluft (2)	-	2.00	
Sonstige transparente Bauteile gegen unbeheizte Gebäudeteile (2)	-	2.50	
Dachflächenfenster gegen Außenluft (3)	-	1.70	
Türen unverglast gegen Außenluft (4)	-	1.70	
Türen unverglast gegen unbeheizte Gebäudeteile (4)	-	2.50	
Tore Rolltore, Sektionaltore u. dgl. gegen Außenluft (5)	-	2.50	
Innentüren	_	-	
Decken und Dachschrägen jeweils gegen Außenluft und gegen Dachräume (durchlüftet oder ungedämmt)	0.17	0.20	erfüllt
Decken gegen unbeheizte Gebäudeteile	-	0.40	
Decken gegen getrennte Wohn- und Betriebseinheiten	-	0.90	
Decken innerhalb von Wohn- und Betriebseinheiten	2.58	-	
Decken über Außenluft (z.B. über Durchfahrten, Parkdecks)	-	0.20	
Decken gegen Garagen	-	0.30	
Böden erdberührt	0.39	0.40	erfüllt
Decken und Dachschrägen kleinflächig jeweils gegen Außenluft und gegen Dachräume (durchlüftet oder ungedämmt), die 2% der Decken und Dachschrägen des gesamten Gebäudes jeweils gegen Außenluft und gegen Dachräume (durchlüftet oder ungedämmt) nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	0.40	
Decken kleinflächig über Außenluft (z.B. über Durchfahrten, Parkdecks), die 2% der Decken des gesamten Gebäudes über Außenluft (z.B. über Durchfahrten, Parkdecks) nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	0.40	
Decken kleinflächig gegen unbeheizte Gebäudeteile, die 2% der Decken des gesamten Gebäudes gegen unbeheizte Gebäudeteile nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	0.80	
Decken kleinflächig gegen getrennte Wohn- und Betriebseinheiten, die 2% der Wände des gesamten Gebäudes gegen getrennte Wohn- und Betriebseinheiten nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	1.80	
Decken kleinflächig innerhalb von Wohn- und Betriebseinheiten, die 2% der Wände des gesamten Gebäudes innerhalb von Wohn- und Betriebseinheiten nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	<u>-</u>	
Decken kleinflächig gegen Garagen, die 2% der Wände des gesamten Gebäudes gegen Garagen nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	0.60	
Böden kleinflächig erdberührt, die 2% der Wände des gesamten Gebäudes erdberührt nicht überschreiten, sofern die Ö-NORM B 8110-2 (Kondensatfreiheit) eingehalten wird.	-	0.80	
 Für Fenster ist für den Nachweis des U-Wertes das Prüfnormmaß von 1,23 m x 1,48 m anzuwenden, für Fenstertüren und verglaste Türen das Maß 1,48 m x 2,18 m. 			

^{(2) ...} Für großflächige, verglaste Fassadenkonstruktionen sind die Abmessungen durch die Symmetrieebenen zu begrenzen.

^{(3) ...} Für Dachflächenfenster ist für den Nachweis des U-Wertes das Prüfnormmaß von 1,23 m x 1,48 m anzuwenden.

^{(4) ...} Für Türen ist das Prüfnormmaß 1,23 m x 2,18 m anzuwenden. (5) ... Für Tore ist das Prüfnormmaß 2,00 m x 2,18 m anzuwenden.

Datenblatt zum Energieausweis

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf St.Bartholomä

HWB 27,7

f_{GEE} 0,71

Ermittlung der Eingabedaten

Haustechnik Daten:

Geometrische Daten: It. Einreichplan vom 03.11..2019.

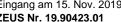
Bauphysikalische Daten: It. Einreichplan vom 03.11..2019 und unter Absprache mit dem Planer. Fenster: Standardfenster 3-fach

verglast mit ISO-Abstandhalter, außer Stiegenhausportale. Erdwärmepumpe. Große PV-Anlage auf dem Dach geplant.

Haustechniksystem

Raumheizung: Monovalente Wärmepumpe mit Quell-/Heizungsmedium Erdreich (Sole, Tiefensonde) / Wasser (B0/W35)

Warmwasser: Warmwasserbereitung mit Heizung kombiniert


Lüftung: Lüftungsart natürlich

Photovoltaik: Kollektor - 1: 70 Module mit je 1,00 m² und 0,25 kW-Peak; Stark belüftete Module; Richtungswinkel 180,0°

(0°=N, 90° = O, 180° = S etc.); Neigungswinkel 45,0°; Gesamtfläche 70,00 m²; gesamt 17,15 kW-Peak

Berechnungsgrundlagen

Gegebenheiten aufgrund von Plänen und Begehung vor Ort; Berechnungen basierend auf der OIB-Richtlinie 6 (2015); Klimadaten und Nutzungsprofil nach ÖNORM B 8110-5; Heizwärmebedarf nach ÖNORM B 8110-6; Endenergiebedarf nach ÖNORM H 5056, 5057, 5058, 5059; Primärenergiebedarf und Gesamtenergieeffizienz nach OIB-Richtlinie 6 (Leitfaden); Anforderungsgrenzwerte nach OIB-Richtlinie 6; Berechnet mit ECOTECH 3.3

Projekt: MF_093-2019_Haas 15. November 2019 Datum:

Allgemein

pauschaler Zuschlag schwer, $fBW = 30.0 [Wh/m^3K]$ Wärmebrückenzuschlag **Bauweise**

> Verschattung vereinfacht

Erdverluste vereinfacht

Steiermark

Anforderungsniveau für Energieausweis Neubau

Gesamtenergieeffizienz-Faktor fGEE Energiekennzahl für Anforderung

Zeitraum für Anforderungen Nationaler Plan "Ab Inkrafttreten OIB-RL 6 2019"

	Norsebettung)		- 0 - 20 - 10
Passivhaus-Abschätzung nach ÖNORM B 8110-6 (außer	utzungspr	Nein Ofil	
Nutzungsprofil	Pensionen		
Nutzungstage Januar	d_Nutz,1 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage Februar	d_Nutz,2 [d/M]	28	(Lt. ÖNORM B 8110-5)
Nutzungstage März	d_Nutz,3 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage April	d_Nutz,4 [d/M]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Mai	d_Nutz,5 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage Juni	d_Nutz,6 [d/M]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Juli	d_Nutz,7 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage August	d_Nutz,8 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage September	d_Nutz,9 [d/M]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Oktober	d_Nutz,10 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage November	d_Nutz,11 [d/M]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Dezember	d_Nutz,12 [d/M]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage pro Jahr	d_Nutz,a [d/a]	365	(Lt. ÖNORM B 8110-5)
Tägliche Nutzungszeit	t_Nutz,d [h/d]	12	(Lt. ÖNORM B 8110-5)
Nutzungsstunden zur Tageszeit pro Jahr	t_Tag,a [h/a]	1.550	(Lt. ÖNORM B 8110-5)
Nutzungsstunden zur Nachtzeit pro Jahr	t_Nacht,a [h/a]	2.830	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit der raumlufttechnischen Anlage	t_RLT, d [h/d]	14	(Lt. ÖNORM B 8110-5)
Betriebstage der raumlufttechnischen Anlage pro Jahr	d_RLT,a [d/a]	365	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit der Heizung	t_h,d [h/d]	14	(Lt. ÖNORM B 8110-5)
Betriebstage der Heizung pro Jahr	d_h,a [d/a]	365	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit der Kühlung	t_c,d [h/d]	12	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit der Nachtlüftung	t_NL,d [h/d]	8	(Lt. ÖNORM B 8110-5)
Solltemperatur des kond. Raumes im Heizfall	_ih [°C]	20	(Lt. ÖNORM B 8110-5)
Solltemperatur des kond. Raumes im Kühlfall	_ic [°C]	26	(Lt. ÖNORM B 8110-5)
Luftwechselrate bei Raumlufttechnik	n_L,RLT [1/h]	1,00	(Lt. ÖNORM B 8110-5)
Luftwechselrate bei Fensterlüftung	n_L,FL [1/h]	0,60	(Lt. ÖNORM B 8110-5)
Luftwechselrate bei Nachtlüftung	n_L,NL [1/h]	1,50	(Lt. ÖNORM B 8110-5)
Wartungswert der Beleuchtungsstärke	E_m [lx]	200	(Lt. ÖNORM B 8110-5)
innere Wärmegewinne Heizfall, bezogen auf BF	q_i,h,n [W/m²]	3,75	(Lt. ÖNORM B 8110-5)
innere Wärmegewinne Heizfall für Passivhaus, bezogen auf BF	q_i,h,PH [W/m²]	2,10	(Lt. ÖNORM B 8110-5)
innere Wärmegewinne Kühlfall, bezogen auf BF	q_i,c,n [W/m²]	3,75	(Lt. ÖNORM B 8110-5)
Tägliche Warmwasser-Wärmebedarf, bezogen auf BF	wwwb [Wh/(m²d)]	35,00	(Lt. ÖNORM B 8110-5)
Feuchteanforderung	x	mit Toleranz	(Lt. ÖNORM B 8110-5)

15. November 2019 Projekt: MF_093-2019_Haas Datum:

Lüftung						
Lüftungsart	natürlich					
Kühlbedarf						
Sonnenschutz Einrichtung	Außenjalousie					
Sonnenschutz Steuerung	manuell/zeitgesteuert					
Oberfläche Gebäude	weiß					

15. November 2019

Datum:

Projekt: MF_093-2019_Haas

	Fläch	enheiz	zung				
Bauteil	Anteil [%]	Vorlauf- temp. [°C]	Rücklauf- temp. [°C]	R-Wert [m²K/W]	R-Wert Anforderung [m²K/W]	Anforderung	
✓ 1.1 TD EG 0,40m U=0,38	100	35	28	2,39	-	-	
▼ TD STGH 0,27m U=2,58	100	35	28	0,13	-	-	
✓ 1.1a TD OG1 neu 0,50m U=0,37	100	35	28	2,43	-	-	
✓ 1.2 TD OG2 0,70m U=0,27	100	35	28	3,48	-	-	
2.2 FD bei OG1 neu 0,47m U=0,17	0	35	28	5,90	-	-	
2.4 FD OG1 ü. Bestand 0,56m U=0,16	0	35	28	5,94	-	-	
3.3 AW Lift EG-OG2 0,37m U=0,27	0	35	28	3,52	-	-	
3.1a AW BESTAND-SAN 0,48m U=0,21	0	35	28	4,54	-	-	
3.1b AW NEU OG1 0,46m U=0,20	0	35	28	4,72	-	-	
3.2 AW OG2 0,42m U=0,22	0	35	28	4,46	-	-	
2.1 FD 0,58m U=0,16	0	35	28	6,18	-	-	
EB Lift 0,50m U=0,39	0	35	28	2,37	-	-	
3.4 AW - UG Lift 0,36m U=0,34	0	35	28	2,74	-	-	
3.4 EW 0,36m U=0,37	0	35	28	2,57	-	-	
Beleuchtung							
Beleuchtungsenergiebedarf Ermittlungsart	В	enchmark					
Benchmark-Wert It. ÖNORM H 5059	34	4,6 kWh	ı/m²				

	Endenergieanteile							
Erläuterungen:								
EEB _{RK}	Endenergiebedarf unter Referenzklimabedingungen							
EEB _{26,RK}	Vergleichswert des Endenergiebedarfes aufgrund des Anforderungsniveaus von 2007 ('26er-Linie') im Referenzzustand (Referenzklima, Referenzgebäude, Referenzausstattung)							
EEBSK	Endenergiebedarf unter Standortklimabedingungen							
fGEE	Gesamtenergieeffizienzfaktor, $f_{GEE} = EEB_{RK} / EEB_{26,RK}$							

Endenergieanteile - Übersicht									
EEB-Anteil	EEB _{RK}	EEB _{26,RK}	EEB _{SK}						
	[kWh/m²]	[kWh/m²]	[kWh/m²]						
Heizen	4,4	9,3	5,1						
Warmwasser	11,9	10,0	11,9						
Hilfsenergie Heizung+Warmwasser	2,0	3,0	2,1						
Kühlen									
Betriebsstrom	16,4	20,4	16,4						
Beleuchtung	34,6	42,9	34,6						
Befeuchtung									
Photovoltaik	-9,2		-9,4						
GESAMT (ohne Befeuchtung)	60,1	85,5	60,7						
fGEE	0,709								

 $\label{prop:continuous} \mbox{F\"{u}r} \mbox{ Nichtwohngeb\"{a}ude werden folgende Komponenten des Endenergiebed arfes EEB}_{26,RK} \mbox{ folgendermaßen berechnet:}$

Betriebsstrom: BSB = BSB * V/(3.BGF) entsprechend Geschoßhöhe 3 m; BSB gem. ÖNORM H 5050 Beleuchtung: BelEB = BelEB * V/(3.BGF) entsprechend Geschoßhöhe 3 m; BelEB gem. ÖNORM H 5059 Kühlen: KEB = KEB_{26,RK} gemäß ÖNORM H 5050

Aufschlüsselung ı	nach Energieträger	
Werte für S	tandortklima	
EEB-Anteil	Strom (Österreich-Mix)	GESAMT
	[kWh/m²]	[kWh/m²]
Heizen	5,1	5,1
Warmwasser	11,9	11,9
Hilfsenergie Heizung+Warmwasser	2,1	2,1
Kühlen		
Betriebsstrom	16,4	16,4
Beleuchtung	34,6	34,6
Befeuchtung		
Photovoltaik	-9,4	-9,4
GESAMT (ohne Befeuchtung)	60.7	60.7

Jahresarbeitszahl Wärmepumpe								
Werte für Standortklima								
		Heizen	Warmwasser	Gesamt				
Elektrische Antriebsenergie	[kWh/m²]	5,1	11,7	16,8				
Umweltwärme Wärmepumpe	[kWh/m²]	19,5	15,9	35,3				
Jahresarbeitszahl (JAZ)	[-]	4.80	2.35	3.10				

v. 2019 Typ: Sanierungsplanung **3.01** Einreichzweck: Baubehörde

Projekt: MF_093-2019_Haas Datum: 15. November 2019

HEB - Endenergie für Heizen und Warmwasserbereitung

(Werte in kWh/m²)

	EEB _{RK}	EEB _{26,RK}	EEBSK
Heizen	4,4	9,3	5,1
Verluste Heizen	56,5	83,4	63,3
Transmission + Lüftung	52,5	78,3	58,8
Verluste Heizungssystem	4,0	5,1	4,5
Abgabe	1,6	1,9	1,7
Verteilung	2,4	3,2	2,8
Speicherung			
Bereitstellung			
Verluste Luftheizung			
Gewinne Heizen	52,1	74,1	58,2
Nutzbare solare + interne Gewinne	27,1	33,9	30,0
Nutzbare rückgewinnbare Verluste	7,7	7,8	8,6
Ertrag Solarthermie			
Umweltwärme Wärmepumpe	17,3	32,4	19,5
Gewinnüberschuss*			
Warmwasser	11,9	10,0	11,9
Verluste Warmwasser	27,6	23,5	27,7
Nutzenergie Warmwasser	12,8	12,8	12,8
Verluste Warmwasser	14,9	10,7	14,9
Abgabe	0,3	0,3	0,3
Verteilung	12,4	8,5	12,4
Speicherung	2,2	1,9	2,2
Bereitstellung			
Gewinne Warmwasser	15,8	13,5	15,9
Ertrag Solarthermie			
Umweltwärme Wärmepumpe	15,8	13,5	15,9
Gewinnüberschuss*			
Hilfsenergie Heizen + Warmwasser	2,0	3,0	2,1
Photovoltaik	9,2		9,4
Bruttoertrag	15,9		16,4
Nettoertrag	9,2		9,4
PV-Export	6,7		7,0
Deckungsgrad [%]	13,7		13,8
Nutzungsgrad [%]	57,9		57,3
Kühlung			
Kältemaschine / Fernkälte			
Rückkühlung			
Pumpen Raumkühlung			
Pumpen RLT-Kühlung			
Umluftventilatoren Raumkühlung			
Ventilatoren RLT-Kreislauf			

^{*}Gewinnüberschuss: Bei sehr hohen Erträgen aus Solarthermie oder Umweltwärme kann es vorkommen, daß die gesamten nutzbaren Wärmegewinne die Verluste übersteigen. Derartige Überschüsse werden für den Endenergiebedarf nicht berücksichtigt und finden sich in diesem Ausdruck mit negativem Vorzeichen ausgewiesen.

Nov. 2019 Typ: Sanierungsplanung 423.01 Einreichzweck: Baubehörde

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Heizung						
Wärmeabgabe						
Regelung	Einzelraumregelung mit elektronischem Regelgerät mit Optimierungsfunktion					
Abgabesystem	Flächenheizung (35/28 °C)					
Verbrauchsermittlung	Individuelle Verbrauchsermittlung und Heizkostenabrechnung (Fixwert)					
Wärmeverteilung						
Lage der Verteilleitungen	Unbeheizt					
Lage der Steigleitungen	100% beheizt					
Lage der Anbindeleitungen	100% beheizt					
Dämmung der Verteilleitungen	2/3 Durchmesser					
Dämmung der Steigleitungen	1/3 Durchmesser					
Dämmung der Anbindeleitungen	1/3 Durchmesser					
Armaturen der Verteilleitungen	Armaturen ungedämmt					
Armaturen der Steigleitungen	Armaturen ungedämmt					
Armaturen der Anbindeleitungen	Armaturen ungedämmt					
Länge der Verteilleitungen [m]	47.26 (Default)					
Länge der Steigleitungen [m]	82.83 (Default)					
Länge der Anbindeleitungen [m]	289.90 (Default)					
Verteilkreisregelung	Gleitende Betriebsweise					
Wärmespeicherung	keine					
Wärmebereitstellung (Zentral)						
Bereitstellung	Monovalente Wärmepumpe					
Quell-/Heizungsmedium	Erdreich (Sole, Tiefensonde) / Wasser (B0/W35)					
Gütegrad	Gütegrad gem. Baujahr ab 2005					
COP am Prüfpunkt [-]	3.96					
Modulierende Wärmepumpe	Nein					
Nennleistung [kW]	36.2 (Default)					
Leistungsaufnahme Umwälzpumpe [kW]	1.10 (Default)					
Umwälzpumpe standard	Nein					

Projekt: MF_093-2019_Haas Datum: 15. November 2019

	Warmwasser
Wärmeabgabe	
Verbrauchsermittlung	Individuelle Verbrauchsermittlung und -abrechnung (Fixwert)
Art der Armaturen	Zweigriffarmaturen (Fixwert)
Wärmeverteilung	
Lage der Verteilleitungen	Unbeheizt
Lage der Steigleitungen	100% beheizt
Dämmung der Verteilleitungen	2/3 Durchmesser
Dämmung der Steigleitungen	1/3 Durchmesser
Armaturen der Verteilleitungen	Armaturen ungedämmt
Armaturen der Steigleitungen	Armaturen ungedämmt
Stichleitungen Material	Kunststoff
Länge der Verteilleitungen [m]	17.77 (Default)
Länge der Steigleitungen [m]	41.41 (Default)
Länge der Stichleitungen [m]	165.66 (Default)
Zirkulationsleitung vorhanden	Ja
Länge der Verteilleitungen Zirkulation [m]	16.77 (Default)
Länge der Steigleitungen Zirkulation [m]	41.41 (Default)
Wärmespeicherung	
Baujahr des Speichers	ab 1994
Art des Speichers	Indirekt beheizter Speicher (Solar, Wärmepumpe) ab 1994
Basisanschluss	Anschlüsse ungedämmt
E-Patrone	Anschluß nicht vorhanden
Anschluss Heizregister Solar	Anschluß nicht vorhanden
Speicher im beheizten Bereich	Nein
Speichervolumen V _{TW.WS} [I]	2070.7 (Default)
Verlust q _{b.WS} [kWh/d]	4.64 (Default)
Mittlere Betriebstemp. theta _{TW,WS,m} [°C]	60.00 (Default)
Wärmebereitstellung (Zentral)	
Bereitstellung	Warmwasserbereitung mit Heizung kombiniert

Solarthermie

Photovoltaik

Stark belüftete Module Polykristallines Silizium

Nein

180.0

0.245 Ja 70.00

17.150

45.0 70 1.00

Projekt: MF_093-2019_Haas

Solarthermie vorhanden

Modulfeld

Photovoltaikanlage vorhanden

Richtungswinkel [°]

Neigungswinkel [*]
Anzahl d. Module [-]
Modul Fläche [m²]
Gebäudeintegration
Art des PV-Moduls

Fläche [m²]

Modul Nennleistung [kW-Peak] Freie Eingabe Nennleistung

Nennleistung [kW-Peak]

Datum: 15. November 2019

15. November 2019 Projekt: MF_093-2019_Haas Datum:

	Raumlufttechnik	
Lüftung, Konditionierung		
Art der Lüftung	Fensterlüftung	
Kühlsystem		
Kühlsystem	(Kein Kühlsystem vorhanden)	

15. November 2019 Projekt: MF_093-2019_Haas Datum:

	Kühltechnik
Kühlsystem	
Art des Kühlsystem	(Kein Kühlsystem vorhanden)

15. November 2019

Datum:

Projekt: MF_093-2019_Haas

	Energiekennzahlen									
		Gebäudel	cenndaten							
Brutto-Grundfläche	1035	,36 m²								
Bezugs-Grundfläche	828	,29 m²								
Brutto-Volumen	3848	,57 m³								
Gebäude-Hüllfläche	1655	,09 m²								
Kompaktheit (A/V)	0	,43 1/m								
Charakteristische Länge	2	,33 m								
Mittlerer U-Wert	0	,34 W/(m²K)								
LEKT-Wert	23	,58 -								
		Ergebnisse	am Standor	t						
Referenz-Heizwärmebedarf	HWB_ref SK	27,7	kWh/m²a	28.725	kWh/a					
Heizwärmebedarf	HWB SK	27,7	kWh/m²a	28.725	kWh/a					
Endenergiebedarf	EEB SK	60,7	kWh/m²a	62.887	kWh/a					
Gesamtenergieeffizienz-Faktor	fGEE SK	0,71	-							
Primärenergiebedarf	PEB SK	116,0	kWh/m²a	120.114	kWh/a					
Kohlendioxidemissionen	CO2 SK	16,8	kg/m²a	17.357	kg/a					
	E	rgebnisse und	Anforderu	ngen						
		Berechnet		Grenzwert		Anforderung				
Referenz-Heizwärmebedarf	HWB_ref RK	29,8	kWh/m²a	45.4	kWh/m²a	erfüllt				
Heizwärmebedarf	HWB RK	24,8	kWh/m²a							
Außeninduzierter Kühlbedarf*	KB* RK	0,2	kWh/m³a	1.0	kWh/m²a	erfüllt				
Heizenergiebedarf	HEB RK	18,3	kWh/m²a							
Endenergiebedarf	EEB RK	60,1	kWh/m²a							
Gesamtenergieeffizienz-Faktor	fGEE RK	0,71		0.80	-	erfüllt				
Erneuerbarer Anteil			Erfüllt							
Primärenergiebedarf	PEB RK	114,8	kWh/m²a							
Primärenergie nicht erneuerbar	PEB-n.ern. RK	79,3	kWh/m²a							
Primärenergie erneuerbar	PEB-ern. RK	35,4	kWh/m²a							
Kohlendioxidemissionen	CO2 RK	16,6	kg/m²a							

15. Nov. 2019 Typ: Sanierungsplanung 9.90423.01 Typ: Sanierungsplanung Einreichzweck: Baubehörde

15. November 2019

Datum:

Projekt: MF_093-2019_Haas

-	Gobäudodat	on (II-Wo	rto Hoizlact) (S	:Κ)	
	Gebaudedai	Gebäudekenn	rte, Heizlast) (S	orc)	
Standort	8151 St.Bartholomä	Gebaudekeili	Brutto-Grundfläche	1035,36	m ²
Norm-Außentemperatur	-12,40 °C		Brutto-Volumen	3848,57	
Soll-Innentemperatur	20.00 °C		Gebäude-Hüllfläche	1655,09	
Durchschnittl. Geschoßhöhe	3,72 m			2,33	
Durchschille. Gescholshoffe	3,72 111		charakteristische Länge mittlerer U-Wert	•	
				·	W/(m²K)
Davidaila			LEKT-Wert	23,58 U-Wert	Leitwert
Bauteile			Fläche [m²]	[W/(m ² K)]	[W/K]
Außenwände (ohne erdberührt)			780,35	0,22	172,18
Dächer			530,71	0,16	86,23
Fenster u. Türen			214,23	1,05	225,52
Erdberührte Bodenplatte			25,91	0,39	5,05
Erdberührte Wände			103,89	0,37	24,64
Wärmebrücken (pauschaler Zus	schlag nach ÖNORM B 81	10-6)			51,36
Fensteranteile			Fläche	Anteil	
			[m²]	[%]	
Fensteranteil in Außenwandfläch	hen		204,75	18,64	
Summen (beheizte Hülle)			Fläche [m²]		Leitwert [W/K]
Summe OBEN			530,71		
Summe UNTEN			25,91		
Summe Außenwandflächen			884,24		
Summe Innenwandflächen			0,00		
Summe					564,98
		Heizlast			
Spezifische Transmissionswärm	neverlust		0,15	W/(m³K)	
Gebäude-Heizlast (P_tot)			25,423	kW	
Spezifische Gebäude-Heizlast (P_tot)		24,554	W/(m ² BGF)	

				F	enst	ter un	d Tür	en im	Bauk	örpe	r - kor	npakt						
Ausricht [°]	Neig. [°]	Anz.	Fenster/Tür	Breite [m]	Höhe [m]	Fläche gesamt [m²]	Ug [W/(m²K]	Uf [W/(m²K]	Psi [W/(mK]	lg [m]	Uw [W/(m²K]	Glas- anteil [%]	g [-]	gw [-]	F_s_W F_s_S [-]	A_trans_W A_trans_S [m²]	Qs [kWh]	Ant.Qs [%]
			SÜD															
161	90	3	AF 1,80/2,20m U=0,94	1,80	2,20	11,88	0,70	1,15	0,04	10,80	0,94	72,00	0,49	0,43	0,75 0,75	2,77 2,77	2384,44	6,67
161	90	3	AF 1,80/2,20m U=0,94	1,80	2,20	11,88	0,70	1,15	0,04	10,80	0,94	72,00	0,49	0,43	0,75 0,75	2,77 2,77	2384,44	6,67
161	90	1	AT 1,10/2,20m U=1,40	1,10	2,20	2,42	1,10	1,65	0,06	5,72	1,40	72,00	0,61	0,54	0,75 0,75		604,67	1,69
161	90	2	AF 1,20/0,80m U=1,01	1,20	0,80	1,92	0,70	1,15	0,04	3,12	1,01	59,21	0,49	0,43	0,75 0,75		316,90	0,89
161	90	1	AF 1,10/2,20m U=0,92	1,10	2,20	2,42	0,70	1,15	0,04	5,72	0,92	72,00	0,49	0,43	0,75 0,75	0,56 0,56	485,72	1,36
161	90	1	AF 1,60/2,20m U=0,88	1,60	2,20	3,52	0,70	1,15	0,04	6,72	0,88	77,63	0,49	0,43	0,75 0,75		761,70	2,13
161	90	2	AF 1,60/1,30m U=0,99	1,60	1,30	4,16	0,70	1,15	0,04	6,80	0,99	64,38	0,49	0,43	0,75 0,75	0,87 0,87	746,64	2,09
161	90	1	AF 1,80/2,40m U=0,86	1,80	2,40	4,32	0,70	1,15	0,04	7,52	0,86	79,73	0,49	0,43	0,75 0,75	1,12 1,12	960,18	2,69
161	90	2	AF 2,70/2,40m U=0,88	2,70	2,40	12,96	0,70	1,15	0,04	13,40	0,88	78,72	0,49	0,43	0,75 0,75	3,31 3,31	2844,06	7,96
161	90	1	AF 1,20/2,40m U=0,90	1,20	2,40	2,88	0,70	1,15	0,04	6,32	0,90	74,18	0,49	0,43	0,75 0,75		595,55	1,67
SUM		17				58,36											12084,29	33,82
			OST															
71	90	1	AF 2,67/9,04m U=1,35 STGH Portal ONO	2,67	11,32	30,22	1,10	1,65	0,06	73,74	1,36	79,25	0,58	0,51	0,75 0,75		5391,77	15,09
71	90	1	AF 1,10/2,20m U=0,92	1,10	2,20	2,42	0,70	1,15	0,04	5,72	0,92	72,00	0,49	0,43	0,75 0,75	0,56 0,56	331,36	0,93
71	90	1	AF 1,80/2,20m U=0,94	1,80	2,20	3,96	0,70	1,15	0,04	10,80	0,94	72,00	0,49	0,43	0,75 0,75	0,92 0,92	542,22	1,52
71	90	1	AF 1,10/2,20m U=0,92	1,10	2,20	2,42	0,70	1,15	0,04	5,72	0,92	72,00	0,49	0,43	0,75 0,75		331,36	0,93
71	90	1	AF 1,80/2,20m U=0,94	1,80	2,20	3,96	0,70	1,15	0,04	10,80	0,94	72,00	0,49	0,43	0,75 0,75	0,92 0,92	542,22	1,52
71	90	1	AF 1,00/0,80m U=1,03	1,00	0,80	0,80	0,70	1,15	0,04	2,72	1,03	56,55	0,49	0,43	0,75 0,75		86,03	0,24
71	90	1	AF 1,10/2,20m U=0,92	1,10	2,20	2,42	0,70	1,15	0,04	5,72	0,92	72,00	0,49	0,43	0,75 0,75	0,56 0,56	331,36	0,93

i i OjCi			1_055-2015_11aas												Datai	11. 10.	INOVCITIBLE	2010
			OST															
71	90	1	AF 1,60/1,30m U=0,99	1,60	1,30	2,08	0,70	1,15	0,04	6,80	0,99	64,38	0,49	0,43	0,75 0,75	0,43 0,43	254,68	0,71
71	90	2	AF 2,70/2,40m U=0,88	2,70	2,40	12,96	0,70	1,15	0,04	13,40	0,88	78,72	0,49	0,43	0,75 0,75	3,31 3,31	1940,23	5,43
71	90	1	AT 1,20/2,20m U=1,45	1,20	2,20	2,64	1,10	1,65	0,06	7,60	1,45	68,30	0,61	0,54	0,75 0,75	0,73 0,73	426,90	1,19
SUM		11				63,88											10178,13	28,49
			WEST															
251	90	1	AT 1,00/2,00m U=1,42	1,00	2,00	2,00	1,10	1,65	0,06	5,12	1,42	69,42	0,61	0,54	0,75 0,75	0,56 0,56	425,51	1,19
251	90	2	AF 1,10/2,20m U=0,92	1,10	2,20	4,84	0,70	1,15	0,04	5,72	0,92	72,00	0,49	0,43	0,75 0,75	1,13 1,13	857,91	2,40
251	90	2	AF 1,60/2,20m U=0,88	1,60	2,20	7,04	0,70	1,15	0,04	6,72	0,88	77,63	0,49	0,43	0,75 0,75	1,77 1,77	1345,36	3,77
251	90	1	AF 1,80/2,20m U=0,94	1,80	2,20	3,96	0,70	1,15	0,04	10,80	0,94	72,00	0,49	0,43	0,75 0,75	0,92 0,92	701,92	1,96
251	90	1	AF 1,60/1,30m U=0,99	1,60	1,30	2,08	0,70	1,15	0,04	6,80	0,99	64,38	0,49	0,43	0,75 0,75	0,43 0,43	329,69	0,92
251	90	2	AF 1,80/1,30m U=0,97	1,80	1,30	4,68	0,70	1,15	0,04	7,20	0,97	66,46	0,49	0,43	0,75 0,75	1,01 1,01	765,74	2,14
251	90	1	AF 1,20/0,80m U=1,01	1,20	0,80	0,96	0,70	1,15	0,04	3,12	1,01	59,21	0,49	0,43	0,75 0,75	0,18 0,18	139,93	0,39
251	90	2	AF 2,70/2,40m U=0,88	2,70	2,40	12,96	0,70	1,15	0,04	13,40	0,88	78,72	0,49	0,43	0,75 0,75	3,31 3,31	2511,68	7,03
251	90	1	AF 1,80/2,40m U=0,86	1,80	2,40	4,32	0,70	1,15	0,04	7,52	0,86	79,73	0,49	0,43	0,75 0,75	1,12 1,12	847,96	2,37
SUM		13				42,84											7925,70	22,18
			NORD															
341	90	1	AF 2,67/8,30m U=1,36 STGH Portal NNW	2,67	8,30	22,16	1,10	1,65	0,06	53,46	1,36	79,28	0,58	0,51	0,75 0,75	6,74 6,74	2954,29	8,27
341	90	2	AF 1,80/1,30m U=0,97	1,80	1,30	4,68	0,70	1,15	0,04	7,20	0,97	66,46	0,49	0,43	0,75 0,75	1,01 1,01	441,88	1,24
341	90	2	AF 1,20/0,80m U=1,01	1,20	0,80	1,92	0,70	1,15	0,04	3,12	1,01	59,21	0,49	0,43	0,75 0,75	0,37 0,37	161,50	0,45
341	90	5	AF 1,80/1,30m U=0,97	1,80	1,30	11,70	0,70	1,15	0,04	7,20	0,97	66,46	0,49	0,43	0,75 0,75	2,52 2,52	1104,71	3,09
341	90	2	AF 1,20/0,80m U=1,01	1,20	0,80	1,92	0,70	1,15	0,04	3,12	1,01	59,21	0,49	0,43	0,75 0,75	0,37 0,37	161,50	0,45
341	90	1	AF 1,10/2,20m U=0,92	1,10	2,20	2,42	0,70	1,15	0,04	5,72	0,92	72,00	0,49	0,43	0,75 0,75	0,56 0,56	247,54	0,69

Projekt: MF_093-2019_Haas Datum: 15. November 2019

			NORD															
341	90	1	AT 1,10/2,20m U=1,40	1,10	2,20	2,42	1,10	1,65	0,06	5,72	1,40	72,00	0,61	0,54	0,75 0,75	0,70 0,70	308,16	0,86
341	90	2	AF 1,20/0,80m U=1,01	1,20	0,80	1,92	0,70	1,15	0,04	3,12	1,01	59,21	0,49	0,43	0,75 0,75	0,37 0,37	161,50	0,45
SUM		16				49,14											5541,09	15,51
SUM	alle	57				214,23											35729,21	100,00

Legende: Ausricht. = Ausrichtung, Neig. = Neigung [°], Breite = Architekturlichte Breite, Höhe = Architekturlichte Höhe, Fläche = Gesamtfläche(außen), Ug = U-Wert des Glases, Uf = U-Wert des Rahmens, PSI = PSI-Wert, Ig = Länge d. Glasrandverbundes (pro Fenster), Uw = gesamter U-Wert des Fensters, Ag = Anteil Glasfläche, g = Gesamtenergiedurchlassgrad(g-wert) It. Bauteil, gw = wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98), fs = Verschattungsfaktor (Winter/Sommer), A_trans = wirksame Fläche (Winter/Sommer) (Glasfläche*gw*fs), Qs = solare Wärmegewinne, Ant. Qs = Anteil an den gesamten solaren Wärmegewinnen

15. November 2019 Projekt: MF_093-2019_Haas Datum:

	Globalstrahlungssummen und Klimadaten (SK)												
Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m²													
Monat	°C	Horizont.	S	S/O	0	N/O	N	N/W	W	S/W	Tage		
Januar	-2,91	33,91	52,22	40,69	22,38	14,24	13,22	14,24	22,38	40,69	31		
Februar	-0,44	55,37	69,77	56,48	34,89	22,15	19,93	22,15	34,89	56,48	28		
März	3,56	87,36	83,86	73,38	55,03	35,82	28,83	35,82	55,03	73,38	31		
April	8,29	114,52	80,16	79,02	68,71	51,53	40,08	51,53	68,71	79,02	30		
Mai	12,89	150,49	82,77	88,79	87,29	69,23	54,18	69,23	87,29	88,79	31		
Juni	16,06	152,15	74,56	85,21	86,73	73,03	57,82	73,03	86,73	85,21	30		
Juli	17,70	160,62	81,92	91,55	93,16	75,49	59,43	75,49	93,16	91,55	31		
August	17,04	140,39	87,04	91,25	84,23	63,17	46,33	63,17	84,23	91,25	31		
September	13,80	102,30	84,91	77,75	63,43	45,01	36,83	45,01	63,43	77,75	30		
Oktober	8,66	66,00	75,90	63,36	42,24	26,40	22,44	26,40	42,24	63,36	31		
November	2,92	37,27	55,16	43,24	24,23	15,28	14,54	15,28	24,23	43,24	30		
Dezember	-1,45	25,22	42,88	33,04	16,90	10,59	10,09	10,59	16,90	33,04	31		

15. November 2019 Projekt: MF_093-2019_Haas Datum:

Globalstrahlungssummen und Klimadaten (RK)												
Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m²												
Monat	°C	Horizont.	S	S/O	0	N/O	N	N/W	W	S/W	Tage	
Januar	-1,53	29,79	39,63	31,95	19,51	13,78	13,11	13,78	19,51	31,95	31	
Februar	0,73	51,42	60,16	49,49	32,14	22,62	21,08	22,62	32,14	49,49	28	
März	4,81	83,40	78,39	68,80	52,12	35,03	28,36	35,03	52,12	68,80	31	
April	9,62	112,81	78,96	77,27	67,68	50,76	39,48	50,76	67,68	77,27	30	
Mai	14,20	153,36	87,41	91,63	88,18	70,16	55,21	70,16	88,18	91,63	31	
Juni	17,33	155,22	77,61	86,15	88,48	74,12	58,99	74,12	88,48	86,15	30	
Juli	19,12	160,58	81,90	91,93	93,14	75,87	59,41	75,87	93,14	91,93	31	
August	18,56	138,50	87,25	89,68	81,71	59,90	44,32	59,90	81,71	89,68	31	
September	15,03	98,97	82,14	74,97	60,37	43,30	35,63	43,30	60,37	74,97	30	
Oktober	9,64	64,35	70,14	59,04	40,86	26,87	23,81	26,87	40,86	59,04	31	
November	4,16	31,46	41,85	33,35	20,14	13,92	13,21	13,92	20,14	33,35	30	
Dezember	0,19	22,33	34,39	26,91	14,63	9,94	9,60	9,94	14,63	26,91	31	

	Heizwärmebedarf (SK)													
Heizwärm	ebedarf			28.725	[kWl	n] Trans	missionsleitwert L7	Γ				564,98		[W/K]
Brutto-Gru	ındfläche E	BGF		1.035,36	[m²]] Innent	emp. Ti					20,0		[C°]
Brutto-Vol	umen V			3.848,57	[m³]] Leitwe	Leitwert innere Gewinne Q_in					3,75		[W/m²]
Heizwärm	ebedarf flä	chenspezifisch		27,74	kWh/i	m²] Speicl	Speicherkapazität C 115457,00				[Wh/K]			
Heizwärm	ebedarf vo	lumenspezifisch		7,46	[kWh/i	m³]								
Monat	Te [°C]	QT [kWh]	QV [kWh]	Verluste [kWh]	QI [kWh]	QS [kWh]	Gewinne [kWh]	gamma [-]	LV [W/K]	tau [h]	a [-]	eta [-]	f_H [-]	Qh [kWh]
1	-2,91	9.632	3.745	13.376	3.832	1.472	5.304	0,40	219,66	147,15	10,20	1,00	1,00	8.073
2	-0,44	7.761	3.017	10.778	3.461	2.120	5.582	0,52	219,66	147,15	10,20	1,00	1,00	5.199
3	3,56	6.911	2.687	9.598	3.832	2.951	6.783	0,71	219,66	147,15	10,20	0,99	1,00	2.874
4	8,29	4.765	1.853	6.618	3.709	3.533	7.241	1,09	219,66	147,15	10,20	0,86	0,50	181
5	12,89	2.988	1.162	4.149	3.832	4.292	8.124	1,96	219,66	147,15	10,20	0,51	0,00	0
6	16,06	1.604	623	2.227	3.709	4.239	7.948	3,57	219,66	147,15	10,20	0,28	0,00	0
7	17,70	965	375	1.341	3.832	4.500	8.332	6,22	219,66	147,15	10,20	0,16	0,00	0
8	17,04	1.244	483	1.727	3.832	4.151	7.983	4,62	219,66	147,15	10,20	0,22	0,00	0
9	13,80	2.522	981	3.502	3.709	3.315	7.024	2,01	219,66	147,15	10,20	0,50	0,00	0
10	8,66	4.765	1.853	6.617	3.832	2.417	6.249	0,94	219,66	147,15	10,20	0,93	0,64	502
11	2,92	6.946	2.701	9.647	3.709	1.575	5.283	0,55	219,66	147,15	10,20	1,00	1,00	4.369
12	-1,45	9.018	3.506	12.524	3.832	1.164	4.996	0,40	219,66	147,15	10,20	1,00	1,00	7.528
Summe		59.120	22.985	82.105	45.121	35.729	80.850							28.725

Te	Mittlere Außentemperatur	gamma	Gewinn / Verlust-Verhältnis
QT	Transmissionsverluste	LV	Lüftungsleitwert
QV	Lüftungsverluste	tau	Gebäudezeitkonstante, tau = C / (LT + LV)
Verluste	Transmissions- und Lüftungsverluste	а	numerischer Parameter, a = a0 + tau / tau0; a0 = 1, tau0 = 16 h
QS	Solare Wärmegewinne	eta	Ausnutzungsgrad, eta = (1-gamma^a)/(1-gamma^(a+1)) bzw. a/(a+1) für gamma = 1
QI	Innere Wärmegewinne	f_H	Anteil des Monats an der Heizperiode (relevant für den Heizwärmebedarf am Standort)
Gewinne	Solare und innere Wärmegewinne	Qh	Heizwärmebedarf = Verluste minus nutzbare Gewinne

	Heizwärmebedarf (RK)													
Heizwärm	ebedarf			25.63	[kWh	n] Trans	missionsleitwert L7	Γ				564,98		[W/K]
Brutto-Gru	ındfläche E	BGF		1.035,3	6 [m²]] Innen	temp. Ti					20,0		[C°]
Brutto-Vol	umen V			3.848,5	7 [m³]] Leitw	Leitwert innere Gewinne Q_in					3,75		[W/m²]
Heizwärm	ebedarf flä	ichenspezifisch		24,70	6 [kWh/i	m²] Speid	Speicherkapazität C 115457,00			00 [Wh/K]				
Heizwärm	ebedarf vo	olumenspezifisch		6,60	6 [kWh/i	m³]								
Monat	Te [°C]	QT [kWh]	QV [kWh]	Verluste [kWh]	QI [kWh]	QS [kWh]	Gewinne [kWh]	gamma [-]	LV [W/K]	tau [h]	a [-]	eta [-]	f_H [-]	Qh [kWh]
1	-1,53	9.050	3.519	12.569	3.832	1.22	5.059	0,40	219,66	147,15	10,20	1,00	1,00	7.510
2	0,73	7.316	2.845	10.161	3.461	1.94	5.401	0,53	219,66	147,15	10,20	1,00	1,00	4.763
3	4,81	6.385	2.482	8.868	3.832	2.80	6.639	0,75	219,66	147,15	10,20	0,99	1,00	2.319
4	9,62	4.222	1.642	5.864	3.709	3.45	7.166	1,22	219,66	147,15	10,20	0,80	0,24	37
5	14,20	2.438	948	3.386	3.832	4.37	8.207	2,42	219,66	147,15	10,20	0,41	0,00	0
6	17,33	1.086	422	1.508	3.709	4.33	8.046	5,33	219,66	147,15	10,20	0,19	0,00	0
7	19,12	370	144	514	3.832	4.53	8.366	16,29	219,66	147,15	10,20	0,06	0,00	0
8	18,56	605	235	841	3.832	4.04	7.876	9,37	219,66	147,15	10,20	0,11	0,00	0
9	15,03	2.022	786	2.808	3.709	3.19	6.908	2,46	219,66	147,15	10,20	0,41	0,00	0
10	9,64	4.355	1.693	6.048	3.832	2.32	6.152	1,02	219,66	147,15	10,20	0,90	0,56	275
11	4,16	6.444	2.505	8.949	3.709	1.26	4.978	0,56	219,66	147,15	10,20	1,00	1,00	3.977
12	0,19	8.327	3.238	11.565	3.832	98:	4.815	0,42	219,66	147,15	10,20	1,00	1,00	6.750
Summe		52.620	20.459	73.079	45.121	34.49	79.614							25.630

Te	Mittlere Außentemperatur	gamma	Gewinn / Verlust-Verhältnis
QT	Transmissionsverluste	LV	Lüftungsleitwert
QV	Lüftungsverluste	tau	Gebäudezeitkonstante, tau = C / (LT + LV)
Verluste	Transmissions- und Lüftungsverluste	а	numerischer Parameter, a = a0 + tau / tau0; a0 = 1, tau0 = 16 h
QS	Solare Wärmegewinne	eta	Ausnutzungsgrad, eta = (1-gamma^a)/(1-gamma^(a+1)) bzw. a/(a+1) für gamma = 1
QI	Innere Wärmegewinne	f_H	Anteil des Monats an der Heizperiode (relevant für den Heizwärmebedarf am Standort)
Gewinne	Solare und innere Wärmegewinne	Qh	Heizwärmebedarf = Verluste minus nutzbare Gewinne

Solare Aufnahmeflächen und Wärmegewinne für Heizwärmebedarf (SK)												
Erklärung ob detailliert oder vereinf	acht									· · · · ·		
Wand	Fenster/Tür	Anzahl	Richtung [°]	Neigung [°]	Fläche gesamt [m²]	gw [-]	Glasanteil [%]	F_s_W [-]	F_s_S [-]	A_trans_W [m²]	A_trans_S [m²]	Qs [kWh]
AW neu Lift EG-OG2 - ONO	AF 2,67/9,04m U=1,35 STGH Portal ONO	1	71	90	30,22	0,51	79,25	0,75	0,75	9,19	9,19	5391,77
AW neu Lift EG-OG2 - WSW	AT 1,00/2,00m U=1,42	1	251	90	2,00	0,54	69,42	0,75	0,75	0,56	0,56	425,51
AW neu Lift EG-OG2 - NNW	AF 2,67/8,30m U=1,36 STGH Portal NNW	1	341	90	22,16	0,51	79,28	0,75	0,75	6,74	6,74	2954,29
AW EG Bestand SAN - ONO	AF 1,10/2,20m U=0,92	1	71	90	2,42	0,43	72,00	0,75	0,75	0,56	0,56	331,36
AW EG Bestand SAN - ONO	AF 1,80/2,20m U=0,94	1	71	90	3,96	0,43	72,00	0,75	0,75	0,92	0,92	542,22
AW EG Bestand SAN - SSO	AF 1,80/2,20m U=0,94	3	161	90	11,88	0,43	72,00	0,75	0,75	2,77	2,77	2384,44
AW EG Bestand SAN - NNW	AF 1,80/1,30m U=0,97	2	341	90	4,68	0,43	66,46	0,75	0,75	1,01	1,01	441,88
AW EG Bestand SAN - NNW	AF 1,20/0,80m U=1,01	2	341	90	1,92	0,43	59,21	0,75	0,75	0,37	0,37	161,50
AW OG1 Bestand SAN - ONO	AF 1,10/2,20m U=0,92	1	71	90	2,42	0,43	72,00	0,75	0,75	0,56	0,56	331,36
AW OG1 Bestand SAN - ONO	AF 1,80/2,20m U=0,94	1	71	90	3,96	0,43	72,00	0,75	0,75	0,92	0,92	542,22
AW OG1 Bestand SAN - SSO	AF 1,80/2,20m U=0,94	3	161	90	11,88	0,43	72,00	0,75	0,75	2,77	2,77	2384,44
AW OG1 Bestand SAN - SSO	AT 1,10/2,20m U=1,40	1	161	90	2,42	0,54	72,00	0,75	0,75	0,70	0,70	604,67
AW OG1 Bestand SAN - SSO	AF 1,20/0,80m U=1,01	2	161	90	1,92	0,43	59,21	0,75	0,75	0,37	0,37	316,90
AW OG1 Bestand SAN - SSO	AF 1,10/2,20m U=0,92	1	161	90	2,42	0,43	72,00	0,75	0,75	0,56	0,56	485,72
AW OG1 Bestand SAN - SSO	AF 1,60/2,20m U=0,88	1	161	90	3,52	0,43	77,63	0,75	0,75	0,89	0,89	761,70
AW OG1 Bestand SAN - WSW	AF 1,10/2,20m U=0,92	2	251	90	4,84	0,43	72,00	0,75	0,75	1,13	1,13	857,91
AW OG1 Bestand SAN - WSW	AF 1,60/2,20m U=0,88	2	251	90	7,04	0,43	77,63	0,75	0,75	1,77	1,77	1345,36
AW OG1 Bestand SAN - WSW	AF 1,80/2,20m U=0,94	1	251	90	3,96	0,43	72,00	0,75	0,75	0,92	0,92	701,92
AW OG1 Bestand SAN - NNW	AF 1,80/1,30m U=0,97	5	341	90	11,70	0,43	66,46	0,75	0,75	2,52	2,52	1104,71
AW OG1 Bestand SAN - NNW	AF 1,20/0,80m U=1,01	2	341	90	1,92	0,43	59,21	0,75	0,75	0,37	0,37	161,50
AW OG1 Bestand SAN - NNW	AF 1,10/2,20m U=0,92	1	341	90	2,42	0,43	72,00	0,75	0,75	0,56	0,56	247,54
AW OG1 NEU - ONO	AF 1,00/0,80m U=1,03	1	71	90	0,80	0,43	56,55	0,75	0,75	0,15	0,15	86,03
AW OG1 NEU - ONO	AF 1,10/2,20m U=0,92	1	71	90	2,42	0,43	72,00	0,75	0,75	0,56	0,56	331,36
AW OG1 NEU - ONO	AF 1,60/1,30m U=0,99	1	71	90	2,08	0,43	64,38	0,75	0,75	0,43	0,43	254,68
AW OG1 NEU - SSO	AF 1,60/1,30m U=0,99	2	161	90	4,16	0,43	64,38	0,75	0,75	0,87	0,87	746,64
AW OG1 NEU - WSW	AF 1,60/1,30m U=0,99	1	251	90	2,08	0,43	64,38	0,75	0,75	0,43	0,43	329,69
AW OG1 NEU - WSW	AF 1,80/1,30m U=0,97	2	251	90	4,68	0,43	66,46	0,75	0,75	1,01	1,01	765,74
AW OG1 NEU - WSW	AF 1,20/0,80m U=1,01	1	251	90	0,96	0,43	59,21	0,75	0,75	0,18	0,18	139,93
AW OG1 NEU - NNW	AT 1,10/2,20m U=1,40	1	341	90	2,42	0,54	72,00	0,75	0,75	0,70	0,70	308,16

F_s_W Verschattungsfaktor Winter

A_trans_W Transparente Aufnahmefläche Winter F_s_S A_trans_W

Verschattungsfaktor Sommer Transparente Aufnahmefläche Sommer Solarer Wärmegewinn

wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98) Qs Berechnet mit ECOTECH Software, Version 3.3.1440. Ein Produkt der BuildDesk Österreich Gesellschaft m.b.H. & Co.KG; Snr: ECT-20180110XXXA303

Projekt: MF_093-2019_Haas 15. November 2019 Datum:

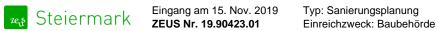
	Solare Aufnahmeflächen und Wärmegewinne für Heizwärmebedarf (SK)											
Erklärung ob detailliert oder vere	Erklärung ob detailliert oder vereinfacht											
Wand	Fenster/Tür	Anzahl	Richtung [°]	Neigung [°]	Fläche gesamt [m²]	gw [-]	Glasanteil [%]	F_s_W [-]	F_s_S [-]	A_trans_W [m²]	A_trans_S [m²]	Qs [kWh]
AW OG2 NEU - ONO	AF 2,70/2,40m U=0,88	2	71	90	12,96	0,43	78,72	0,75	0,75	3,31	3,31	1940,23
AW OG2 NEU - SSO	AF 1,80/2,40m U=0,86	1	161	90	4,32	0,43	79,73	0,75	0,75	1,12	1,12	960,18
AW OG2 NEU - SSO	AF 2,70/2,40m U=0,88	2	161	90	12,96	0,43	78,72	0,75	0,75	3,31	3,31	2844,06
AW OG2 NEU - SSO	AF 1,20/2,40m U=0,90	1	161	90	2,88	0,43	74,18	0,75	0,75	0,69	0,69	595,55
AW OG2 NEU - WSW	AF 2,70/2,40m U=0,88	2	251	90	12,96	0,43	78,72	0,75	0,75	3,31	3,31	2511,68
AW OG2 NEU - WSW	AF 1,80/2,40m U=0,86	1	251	90	4,32	0,43	79,73	0,75	0,75	1,12	1,12	847,96
AW OG2 NEU - NNW	AF 1,20/0,80m U=1,01	2	341	90	1,92	0,43	59,21	0,75	0,75	0,37	0,37	161,50
AW neu Lift - UG - ONO	AT 1,20/2,20m U=1,45	1	71	90	2,64	0,54	68,30	0,75	0,75	0,73	0,73	426,90

F_s_W Verschattungsfaktor Winter

gw

A_trans_W Transparente Aufnahmefläche Winter

wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98)


F_s_S Verschattungsfaktor Sommer

A_trans_W Transparente Aufnahmefläche Sommer

Solarer Wärmegewinn Qs

Solare Aufnahmeflächen Verschattung für Heizwärmebedarf (SK)															
Erklärung															
Wand	Fenster/Tür	Тур	Horizontal- Winkel [°]	Überhang- Winkel [°]	Seiten- Winkel [°]	F_h_W [-]	F_h_S [-]	F_o_W [-]	F_o_S [-]	F_f_W [-]	F_f_S [-]	F_s_W [-]	F_s_S [-]	F_s_W direkt [-]	F_s_S direkt [-]
AW neu Lift EG-OG2 - ONO	AF 2,67/9,04m U=1,35 STGH Portal ONO	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW neu Lift EG-OG2 - WSW	AT 1,00/2,00m U=1,42	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW neu Lift EG-OG2 - NNW	AF 2,67/8,30m U=1,36 STGH Portal NNW	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW EG Bestand SAN - ONO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW EG Bestand SAN - ONO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW EG Bestand SAN - SSO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW EG Bestand SAN - NNW	AF 1,80/1,30m U=0,97	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW EG Bestand SAN - NNW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - ONO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - ONO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-

Тур	Eingabetyp des Verschattungsfaktors (vereinfacht/detailliert/direkt)		
F_h_W	Verschattungsfaktor für Horizontüberhöhung Winter	F_h_S	Verschattungsfaktor für Horizontüberhöhung Sommer
F_o_W	Verschattungsfaktor für horizontale Überstände Winter	F_o_S	Verschattungsfaktor für horizontale Überstände Sommer
F_f_W	Verschattungsfaktor für vertikale Überstände Winter	F_f_S	Verschattungsfaktor für vertikale Überstände Sommer
F_s_W	Verschattungsfaktor Winter	F_s_S	Verschattungsfaktor Sommer
F_s_W direkt	Verschattungsfaktor bei direkter Eingabe Winter	F_s_S direkt	Verschattungsfaktor bei direkter Eingabe Sommer

Projekt: MF_093-2019_Haas 15. November 2019 Datum:

	Solare Aufna	hmeflächei	n Verso	hattung	g für H	eizw	ärme	ebeda	arf (SK)					
Erklärung															
Wand	Fenster/Tür	Тур	Horizontal- Winkel [°]	Überhang- Winkel [°]	Seiten- Winkel [°]	F_h_W [-]	F_h_S [-]	F_o_W [-]	F_o_S [-]	F_f_W [-]	F_f_S [-]	F_s_W [-]	F_s_S [-]	F_s_W direkt [-]	F_s_S direkt [-]
AW OG1 Bestand SAN - SSO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 Bestand SAN - SSO	AT 1,10/2,20m U=1,40	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,60/2,20m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 Bestand SAN - WSW	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 Bestand SAN - WSW	AF 1,60/2,20m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 Bestand SAN - WSW	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-	-	-	-	_	0.75	0.75	-	-
AW OG1 Bestand SAN - NNW	AF 1,80/1,30m U=0,97	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 Bestand SAN - NNW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 Bestand SAN - NNW	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 NEU - ONO	AF 1,00/0,80m U=1,03	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 NEU - ONO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 NEU - ONO	AF 1,60/1,30m U=0,99	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 NEU - SSO	AF 1,60/1,30m U=0,99	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 NEU - WSW	AF 1,60/1,30m U=0,99	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 NEU - WSW	AF 1,80/1,30m U=0,97	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 NEU - WSW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG1 NEU - NNW	AT 1,10/2,20m U=1,40	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG2 NEU - ONO	AF 2,70/2,40m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG2 NEU - SSO	AF 1,80/2,40m U=0,86	vereinfacht	-	-	-	-	-	-	-	-	_	0.75	0.75	-	
AW OG2 NEU - SSO	AF 2,70/2,40m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG2 NEU - SSO	AF 1,20/2,40m U=0,90	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	
AW OG2 NEU - WSW	AF 2,70/2,40m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - WSW	AF 1,80/2,40m U=0,86	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - NNW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW neu Lift - UG - ONO	AT 1,20/2,20m U=1,45	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-

Тур	Eingabetyp des Verschattungsfaktors (vereinfacht/detailliert/direkt)		
F_h_W	Verschattungsfaktor für Horizontüberhöhung Winter	F_h_S	Verschattungsfaktor für Horizontüberhöhung Sommer
F_o_W	Verschattungsfaktor für horizontale Überstände Winter	F_o_S	Verschattungsfaktor für horizontale Überstände Sommer
F_f_W	Verschattungsfaktor für vertikale Überstände Winter	F_f_S	Verschattungsfaktor für vertikale Überstände Sommer
F_s_W	Verschattungsfaktor Winter	F_s_S	Verschattungsfaktor Sommer
F_s_W direkt	Verschattungsfaktor bei direkter Eingabe Winter	F_s_S direkt	Verschattungsfaktor bei direkter Eingabe Sommer

Projekt: MF_093-2019_Haas 15. November 2019 Datum:

•	Solare Gewinne transparent für Heizwärmebedarf (SK) [kWh]												
	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Summe
00001. AW neu Lift EG-OG2 - ONO AF 2,67/9,04m U=1,35 STGH Portal ONO	156	249	409	558	733	741	782	684	489	303	171	116	5.392
00002. AW neu Lift EG-OG2 - WSW AT 1,00/2,00m U=1,42	18	26	36	42	51	49	52	50	40	30	19	14	426
00003. AW neu Lift EG-OG2 - NNW AF 2,67/8,30m U=1,36 STGH Portal NNW	89	134	206	301	406	431	444	360	262	156	98	68	2.954
00004. AW EG Bestand SAN - ONO AF 1,10/2,20m U=0,92	10	15	25	34	45	46	48	42	30	19	11	7	331
00005. AW EG Bestand SAN - ONO AF 1,80/2,20m U=0,94	16	25	41	56	74	75	79	69	49	30	17	12	542
00006. AW EG Bestand SAN - SSO AF 1,80/2,20m U=0,94	134	181	220	222	238	219	240	249	230	198	142	110	2.384
00007. AW EG Bestand SAN - NNW AF 1,80/1,30m U=0,97	13	20	31	45	61	64	66	54	39	23	15	10	442
00008. AW EG Bestand SAN - NNW AF 1,20/0,80m U=1,01	5	7	11	16	22	24	24	20	14	9	5	4	162
00009. AW OG1 Bestand SAN - ONO AF 1,10/2,20m U=0,92	10	15	25	34	45	46	48	42	30	19	11	7	331
00010. AW OG1 Bestand SAN - ONO AF 1,80/2,20m U=0,94	16	25	41	56	74	75	79	69	49	30	17	12	542
00011. AW OG1 Bestand SAN - SSO AF 1,80/2,20m U=0,94	134	181	220	222	238	219	240	249	230	198	142	110	2.384
00012. AW OG1 Bestand SAN - SSO AT 1,10/2,20m U=1,40	34	46	56	56	60	56	61	63	58	50	36	28	605
00013. AW OG1 Bestand SAN - SSO AF 1,20/0,80m U=1,01	18	24	29	30	32	29	32	33	31	26	19	15	317
00014. AW OG1 Bestand SAN - SSO AF 1,10/2,20m U=0,92	27	37	45	45	48	45	49	51	47	40	29	23	486
00015. AW OG1 Bestand SAN - SSO AF 1,60/2,20m U=0,88	43	58	70	71	76	70	77	80	73	63	45	35	762
00016. AW OG1 Bestand SAN - WSW AF 1,10/2,20m U=0,92	36	52	73	85	102	100	105	100	80	60	38	28	858
00017. AW OG1 Bestand SAN - WSW AF 1,60/2,20m U=0,88	56	81	115	134	160	156	165	157	125	94	59	44	1.345
00018. AW OG1 Bestand SAN - WSW AF 1,80/2,20m U=0,94	29	42	60	70	83	82	86	82	65	49	31	23	702
00019. AW OG1 Bestand SAN - NNW AF 1,80/1,30m U=0,97	33	50	77	113	152	161	166	134	98	58	37	25	1.105
00020. AW OG1 Bestand SAN - NNW AF 1,20/0,80m U=1,01	5	7	11	16	22	24	24	20	14	9	5	4	162

00021. AW OG1 Bestand SAN - NNW AF 1,10/2,20m U=0,92	7	11	17	25	34	36	37	30	22	13	8	6	248
00022. AW OG1 NEU - ONO AF 1,00/0,80m U=1,03	2	4	7	9	12	12	12	11	8	5	3	2	86
00023. AW OG1 NEU - ONO AF 1,10/2,20m U=0,92	10	15	25	34	45	46	48	42	30	19	11	7	331
00024. AW OG1 NEU - ONO AF 1,60/1,30m U=0,99	7	12	19	26	35	35	37	32	23	14	8	5	255
00025. AW OG1 NEU - SSO AF 1,60/1,30m U=0,99	42	57	69	70	74	69	75	78	72	62	44	35	747
00026. AW OG1 NEU - WSW AF 1,60/1,30m U=0,99	14	20	28	33	39	38	40	38	31	23	15	11	330
00027. AW OG1 NEU - WSW AF 1,80/1,30m U=0,97	32	46	65	76	91	89	94	89	71	53	34	25	766
00028. AW OG1 NEU - WSW AF 1,20/0,80m U=1,01	6	8	12	14	17	16	17	16	13	10	6	5	140
00029. AW OG1 NEU - NNW AT 1,10/2,20m U=1,40	9	14	21	31	42	45	46	38	27	16	10	7	308
00030. AW OG2 NEU - ONO AF 2,70/2,40m U=0,88	56	90	147	201	264	267	282	246	176	109	62	42	1.940
00031. AW OG2 NEU - SSO AF 1,80/2,40m U=0,86	54	73	89	89	96	88	97	100	93	80	57	44	960
00032. AW OG2 NEU - SSO AF 2,70/2,40m U=0,88	160	216	263	265	284	262	287	297	274	236	169	132	2.844
00033. AW OG2 NEU - SSO AF 1,20/2,40m U=0,90	34	45	55	56	59	55	60	62	57	49	35	28	596
00034. AW OG2 NEU - WSW AF 2,70/2,40m U=0,88	104	152	214	250	299	292	308	292	233	175	111	82	2.512
00035. AW OG2 NEU - WSW AF 1,80/2,40m U=0,86	35	51	72	84	101	99	104	99	79	59	37	28	848
00036. AW OG2 NEU - NNW AF 1,20/0,80m U=1,01	5	7	11	16	22	24	24	20	14	9	5	4	162
00037. AW neu Lift - UG - ONO AT 1,20/2,20m U=1,45	12	20	32	44	58	59	62	54	39	24	14	9	427
Summe	1.472	2.120	2.951	3.533	4.292	4.239	4.500	4.151	3.315	2.417	1.575	1.164	35.729

MF 093-2019 Haas Projekt: 15. November 2019 Datum:

Projekt: MF_093-20	019_Haas		L	Datum:	15. ľ	Novembe	r 2019
Trans	smissionsverluste für	Heizwa	ärmeb	edarf	(SK)		
	Transmissionsverluste						
Wand	Bauteil	Fläche [m²]	U [W/(m²K)]	f_i [-]	f_FH [-]	Anteil FH [-]	LT [W/K]
Flachdach OG1	2.2 FD bei OG1 neu 0,47m U=0,17	131,90	0,17	1,000	1,000	0,00	22,42
Flachdach OG1 bei Bestand	2.4 FD OG1 ü. Bestand 0,56m U=0,16	134,85	0,16	1,000	1,000	0,00	21,58
AW neu Lift EG-OG2 - ONO	3.3 AW Lift EG-OG2 0,37m U=0,27	21,06	0,27	1,000	1,000	0,00	5,69
AW neu Lift EG-OG2 - ONO	AF 2,67/9,04m U=1,35 STGH Portal ONO	30,22	1,36	1,000	1,000	0,00	41,11
AW neu Lift EG-OG2 - WSW	3.3 AW Lift EG-OG2 0,37m U=0,27	27,80	0,27	1,000	1,000	0,00	7,51
AW neu Lift EG-OG2 - WSW	AT 1,00/2,00m U=1,42	2,00	1,42	1,000	1,000	0,00	2,84
AW neu Lift EG-OG2 - NNW	3.3 AW Lift EG-OG2 0,37m U=0,27	33,86	0,27	1,000	1,000	0,00	9,14
AW neu Lift EG-OG2 - NNW	AF 2,67/8,30m U=1,36 STGH Portal NNW	22,16	1,36	1,000	1,000	0,00	30,14
AW EG Bestand SAN - ONO	3.1a AW BESTAND-SAN 0,48m U=0,21	34,46	0,21	1,000	1,000	0,00	7,24
AW EG Bestand SAN - ONO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW EG Bestand SAN - ONO	AF 1,80/2,20m U=0,94	3,96	0,94	1,000	1,000	0,00	3,72
AW EG Bestand SAN - SSO	3.1a AW BESTAND-SAN 0,48m U=0,21	43,13	0,21	1,000	1,000	0,00	9,06
AW EG Bestand SAN - SSO	AF 1,80/2,20m U=0,94	11,88	0,94	1,000	1,000	0,00	11,17
AW EG Bestand SAN - NNW	3.1a AW BESTAND-SAN 0,48m U=0,21	39,56	0,21	1,000	1,000	0,00	8,31
AW EG Bestand SAN - NNW	AF 1,80/1,30m U=0,97	4,68	0,97	1,000	1,000	0,00	4,54
AW EG Bestand SAN - NNW	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94
AW OG1 Bestand SAN - ONO	3.1a AW BESTAND-SAN 0,48m U=0,21	37,44	0,21	1,000	1,000	0,00	7,86
AW OG1 Bestand SAN - ONO	AF 1,10/2,20m U=0,92	2,42	0.92	1,000	1,000	0,00	2,23
AW OG1 Bestand SAN - ONO	AF 1,80/2,20m U=0,94	3,96	0,94	1,000	1,000	0,00	3,72
AW OG1 Bestand SAN - SSO	3.1a AW BESTAND-SAN 0,48m U=0,21	93,89	0,21	1,000	1,000	0,00	19,72
AW OG1 Bestand SAN - SSO	AF 1,80/2,20m U=0,94	11,88	0,94	1,000	1,000	0,00	11,17
AW OG1 Bestand SAN - SSO	AT 1,10/2,20m U=1,40	2,42	1,40	1,000	1,000	0,00	3,39
AW OG1 Bestand SAN - SSO	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94
AW OG1 Bestand SAN - SSO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 Bestand SAN - SSO	AF 1,60/2,20m U=0,88	3,52	0,88	1,000	1,000	0.00	3,10
AW OG1 Bestand SAN - WSW	3.1a AW BESTAND-SAN 0,48m U=0,21	36,32		1,000	-	0,00	7,63
AW OG1 Bestand SAN - WSW	AF 1,10/2,20m U=0,92	4,84	0,92	1,000	1,000	0,00	4,45
AW OG1 Bestand SAN - WSW	AF 1,60/2,20m U=0,88	7,04	0,88	1,000	1,000	0,00	6,20
AW OG1 Bestand SAN - WSW	AF 1,80/2,20m U=0,94	3,96	0,94	1,000	1,000	0,00	3,72
AW OG1 Bestand SAN - NNW	3.1a AW BESTAND-SAN 0,48m U=0,21	79,63	0,21	1,000	1,000	0,00	16,72
AW OG1 Bestand SAN - NNW	AF 1,80/1,30m U=0,97	11,70	0,97	1,000	1,000	0,00	11,35
AW OG1 Bestand SAN - NNW	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94
AW OG1 Bestand SAN - NNW	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 NEU - ONO	3.1b AW NEU OG1 0,46m U=0,20	41,57	0,20	1,000	1,000	0,00	8,31
AW OG1 NEU - ONO	AF 1,00/0,80m U=1,03	0,80	1,03	1,000	1,000	0,00	0,82
AW OG1 NEU - ONO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 NEU - ONO	AF 1,60/1,30m U=0,99	2,08	0,99	1,000	1,000	0,00	2,06
AW OG1 NEU - SSO	3.1b AW NEU OG1 0,46m U=0,20	35,23	0,20	1,000	1,000	0,00	7,05
AW OG1 NEU - SSO	AF 1,60/1,30m U=0,99	4,16	0,99	1,000	1,000	0,00	4,12
AW OG1 NEU - WSW	3.1b AW NEU OG1 0,46m U=0,20	39,15	0,20	1,000	1,000	0,00	7,83
AW OG1 NEU - WSW	AF 1,60/1,30m U=0,99	2,08	0,99	1,000	1,000	0,00	2,06
AW OG1 NEU - WSW	AF 1,80/1,30m U=0,97	4,68	0,97	1,000	1,000	0,00	4,54
AW OG1 NEU - WSW	AF 1,20/0,80m U=1,01	0,96	1,01	1,000	1,000	0,00	0,97
AW OG1 NEU - NNW	3.1b AW NEU OG1 0,46m U=0,20	36,97	0,20	1,000	1,000	0,00	7,39
	<u> </u>	·				, -	, -

15. November 2019

Datum:

Projekt: MF_093-2019_Haas

	Transmissionsverlust	e zu Auße	nluft - l	e						
Wand	Bauteil	Fläche [m²]	U [W/(m²K)]	f_i [-]	f_FH [-]	Anteil FH [-]	LT [W/K]			
AW OG1 NEU - NNW	AT 1,10/2,20m U=1,40	2,42	1,40	1,000	1,000	0,00	3,39			
AW OG2 NEU - ONO	3.2 AW OG2 0,42m U=0,22	27,42	0,22	1,000	1,000	0,00	6,03			
AW OG2 NEU - ONO	AF 2,70/2,40m U=0,88	12,96	0,88	1,000	1,000	0,00	11,40			
AW OG2 NEU - SSO	3.2 AW OG2 0,42m U=0,22	48,50	0,22	1,000	1,000	0,00	10,67			
AW OG2 NEU - SSO	AF 1,80/2,40m U=0,86	4,32	0,86	1,000	1,000	0,00	3,72			
AW OG2 NEU - SSO	AF 2,70/2,40m U=0,88	12,96	0,88	1,000	1,000	0,00	11,40			
AW OG2 NEU - SSO	1,000	1,000	0,00	2,59						
AW OG2 NEU - WSW	1,000	1,000	0,00	6,78						
AW OG2 NEU - WSW 3.2 AW OG2 0,42m U=0,22 30,80 0,22 1,000 1,000 0,00 6,7 AW OG2 NEU - WSW AF 2,70/2,40m U=0,88 12,96 0,88 1,000 1,000 0,00 11,4										
AW OG2 NEU - WSW	AF 1,80/2,40m U=0,86	4,32	0,86	1,000	1,000	0,00	3,72			
AW OG2 NEU - NNW	3.2 AW OG2 0,42m U=0,22	47,96	0,22	1,000	1,000	0,00	10,55			
AW OG2 NEU - NNW	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94			
Flachdach OG2	263,96	0,16	1,000 1,000		0,00	42,23				
AW neu Lift - UG - ONO	3.4 AW - UG Lift 0,36m U=0,34	0,34	1,000	1,000	0,00	6,86				
AW neu Lift - UG - ONO	AT 1,20/2,20m U=1,45	2,64	1,45	1,000	1,000	0,00	3,83			
AW Neu Lift-UG - NNW	3.4 AW - UG Lift 0,36m U=0,34	5,43	0,34	1,000	1,000	0,00	1,84			
						Summe	483,93			
Transmiss	sionsverluste zu Erde oder	zu unkor	ditionie	rtem K	Celler - L	_g				
Wand	Bauteil	Fläche [m²]	U [W/(m²K)]	f_i [-]	f_FH [-]	Anteil FH [-]	LT [W/K]			
erdanliegender Boden STGH	EB Lift 0,50m U=0,39	25,91	0,39	0,500	1,000	0,00	5,05			
EW < 1,50m	3.4 EW 0,36m U=0,37	21,23	0,37	0,800	1,000	0,00	6,28			
EW > 1,50m	3.4 EW 0,36m U=0,37	82,66	0,37	0,600	1,000	0,00	18,35			
						Summe	29,69			
	Leitwe	rte								
Hüllfläche AB						1655,09	m²			
Leitwert für Bauteile, die an Außenluft grenzen (Le) 483,93 W/K										
Leitwert für bodenberührte Bauteile	und Bauteile, die an unkonditionierte k	Keller grenzen	Lg			29,69	W/K			
Leitwert für Bauteile, die an unbehe	eizte Räume grenzen (Lu)					0,00	W/K			
Leitwertzuschlag für Wärmebrücke	n (detailliert lt. Baukörper) (informativ)					0,00	W/K			
Leitwertzuschlag für Wärmebrücke	n (pauschaler Zuschlag nach ÖNORM l	B 8110-6)				51,36	W/K			
Leitwert der Gebäudehülle LT 564,98 W/K										

15. November 2019 Projekt: MF_093-2019_Haas Datum:

, –	719_Haas 			patum:		vovembe	1 2013
Trans	smissionsverluste für	Heizwä	ärmeb	edarf	(RK)		
	Transmissionsverluste	e zu Auße	enluft - L	.e			
Wand	Bauteil	Fläche [m²]	U [W/(m²K)]	f_i [-]	f_FH [-]	Anteil FH [-]	LT [W/K]
Flachdach OG1	2.2 FD bei OG1 neu 0,47m U=0,17	131,90	0,17	1,000	1,000	0,00	22,42
Flachdach OG1 bei Bestand	2.4 FD OG1 ü. Bestand 0,56m U=0,16	134,85	0,16	1,000	1,000	0,00	21,58
AW neu Lift EG-OG2 - ONO	3.3 AW Lift EG-OG2 0,37m U=0,27	21,06	0,27	1,000	1,000	0,00	5,69
AW neu Lift EG-OG2 - ONO	AF 2,67/9,04m U=1,35 STGH Portal ONO	30,22	1,36	1,000	1,000	0,00	41,11
AW neu Lift EG-OG2 - WSW	3.3 AW Lift EG-OG2 0,37m U=0,27	27,80	0,27	1,000	1,000	0,00	7,51
AW neu Lift EG-OG2 - WSW	AT 1,00/2,00m U=1,42	2,00	1,42	1,000	1,000	0,00	2,84
AW neu Lift EG-OG2 - NNW	3.3 AW Lift EG-OG2 0,37m U=0,27	33,86	0,27	1,000	1,000	0,00	9,14
AW neu Lift EG-OG2 - NNW	AF 2,67/8,30m U=1,36 STGH Portal NNW	22,16	1,36	1,000	1,000	0,00	30,14
AW EG Bestand SAN - ONO	3.1a AW BESTAND-SAN 0,48m U=0,21	34,46	0,21	1,000	1,000	0,00	7,24
AW EG Bestand SAN - ONO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW EG Bestand SAN - ONO	AF 1,80/2,20m U=0,94	3,96	0,94	1,000	1,000	0,00	3,72
AW EG Bestand SAN - SSO	3.1a AW BESTAND-SAN 0,48m U=0,21	43,13	0,21	1,000	1,000	0,00	9,06
AW EG Bestand SAN - SSO	AF 1,80/2,20m U=0,94	11,88	0,94	1,000	1,000	0,00	11,17
AW EG Bestand SAN - NNW	3.1a AW BESTAND-SAN 0,48m U=0,21	39,56	0,21	1,000	1,000	0,00	8,31
AW EG Bestand SAN - NNW	AF 1,80/1,30m U=0,97	4,68	0,97	1,000	1,000	0,00	4,54
AW EG Bestand SAN - NNW	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94
AW OG1 Bestand SAN - ONO	3.1a AW BESTAND-SAN 0,48m U=0,21	37,44	0,21	1,000	1,000	0,00	7,86
AW OG1 Bestand SAN - ONO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 Bestand SAN - ONO	AF 1,80/2,20m U=0,94	3,96	0,94	1,000	1,000	0,00	3,72
AW OG1 Bestand SAN - SSO	3.1a AW BESTAND-SAN 0,48m U=0,21	93,89	0,21	1,000	1,000	0,00	19,72
AW OG1 Bestand SAN - SSO	AF 1,80/2,20m U=0,94	11,88	0,94	1,000	1,000	0,00	11,17
AW OG1 Bestand SAN - SSO	AT 1,10/2,20m U=1,40	2,42	1,40	1,000	1,000	0,00	3,39
AW OG1 Bestand SAN - SSO	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94
AW OG1 Bestand SAN - SSO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 Bestand SAN - SSO	AF 1,60/2,20m U=0,88	3,52	0,88	1,000	1,000	0,00	3,10
AW OG1 Bestand SAN - WSW	3.1a AW BESTAND-SAN 0,48m U=0,21	36,32	0,21	1,000	1,000	0,00	7,63
AW OG1 Bestand SAN - WSW	AF 1,10/2,20m U=0,92	4,84	0,92	1,000	1,000	0,00	4,45
AW OG1 Bestand SAN - WSW	AF 1,60/2,20m U=0,88	7,04	0,88	1,000	1,000	0,00	6,20
AW OG1 Bestand SAN - WSW	AF 1,80/2,20m U=0,94	3,96	0,94	1,000	1,000	0,00	3,72
AW OG1 Bestand SAN - NNW	3.1a AW BESTAND-SAN 0,48m U=0,21	79,63	0,21	1,000	1,000	0,00	16,72
AW OG1 Bestand SAN - NNW	AF 1,80/1,30m U=0,97	11,70	0,97	1,000	1,000	0,00	11,35
AW OG1 Bestand SAN - NNW	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94
AW OG1 Bestand SAN - NNW	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 NEU - ONO	3.1b AW NEU OG1 0,46m U=0,20	41,57	0,20	1,000	1,000	0,00	8,31
AW OG1 NEU - ONO	AF 1,00/0,80m U=1,03	0,80	1,03	1,000	1,000	0,00	0,82
AW OG1 NEU - ONO	AF 1,10/2,20m U=0,92	2,42	0,92	1,000	1,000	0,00	2,23
AW OG1 NEU - ONO	AF 1,60/1,30m U=0,99	2,08	0,99	1,000	1,000	0,00	2,06
AW OG1 NEU - SSO	3.1b AW NEU OG1 0,46m U=0,20	35,23	0,20	1,000	1,000	0,00	7,05
AW OG1 NEU - SSO	AF 1,60/1,30m U=0,99	4,16	0,99	1,000	1,000	0,00	4,12
AW OG1 NEU - WSW	3.1b AW NEU OG1 0,46m U=0,20	39,15	0,20	1,000	1,000	0,00	7,83
AW OG1 NEU - WSW	AF 1,60/1,30m U=0,99	2,08	0,99	1,000	1,000	0,00	2,06
AW OG1 NEU - WSW	AF 1,80/1,30m U=0,97	4,68	0,97	1,000	1,000	0,00	4,54
AW OG1 NEU - WSW	AF 1,20/0,80m U=1,01	0,96	1,01	1,000	1,000	0,00	0,97
AW OG1 NEU - NNW	3.1b AW NEU OG1 0,46m U=0,20	36,97	0,20	1,000	1,000	0,00	7,39

15. November 2019

Datum:

Projekt: MF_093-2019_Haas

	Transmissionsverlust	e zu Auße	enluft - L	.e						
Wand	Bauteil	Fläche [m²]	U [W/(m²K)]	f_i [-]	f_FH [-]	Anteil FH [-]	LT [W/K]			
AW OG1 NEU - NNW	AT 1,10/2,20m U=1,40	2,42	1,40	1,000	1,000	0,00	3,39			
AW OG2 NEU - ONO	3.2 AW OG2 0,42m U=0,22	27,42	0,22	1,000	1,000	0,00	6,03			
AW OG2 NEU - ONO	AF 2,70/2,40m U=0,88	12,96	0,88	1,000	1,000	0,00	11,40			
AW OG2 NEU - SSO	3.2 AW OG2 0,42m U=0,22	48,50	0,22	1,000	1,000	0,00	10,67			
AW OG2 NEU - SSO	AF 1,80/2,40m U=0,86	4,32	0,86	1,000	1,000	0,00	3,72			
AW OG2 NEU - SSO	AF 2,70/2,40m U=0,88	12,96	0,88	1,000	1,000	0,00	11,40			
AW OG2 NEU - SSO	0,90	1,000	1,000	0,00	2,59					
AW OG2 NEU - WSW	1,000	1,000	0,00	6,78						
AW OG2 NEU - WSW 3.2 AW OG2 0,42m U=0,22 30,80 0,22 1,000 1,000 0,00 6,78 AW OG2 NEU - WSW AF 2,70/2,40m U=0,88 12,96 0,88 1,000 1,000 0,00 11,44										
AW OG2 NEU - WSW	AF 1,80/2,40m U=0,86	4,32	0,86	1,000	1,000	0,00	3,72			
AW OG2 NEU - NNW	3.2 AW OG2 0,42m U=0,22	47,96	0,22	1,000	1,000	0,00	10,55			
AW OG2 NEU - NNW	AF 1,20/0,80m U=1,01	1,92	1,01	1,000	1,000	0,00	1,94			
Flachdach OG2	chdach OG2 2.1 FD 0,58m U=0,16				1,000	0,00	42,23			
AW neu Lift - UG - ONO	3.4 AW - UG Lift 0,36m U=0,34	20,17	0,34	1,000	1,000	0,00	6,86			
AW neu Lift - UG - ONO	AT 1,20/2,20m U=1,45	2,64	1,45	1,000	1,000	0,00	3,83			
AW Neu Lift-UG - NNW	3.4 AW - UG Lift 0,36m U=0,34	5,43	0,34	1,000	1,000	0,00	1,84			
						Summe	483,93			
Transmis	sionsverluste zu Erde oder	zu unkor	ditionie	rtem k	Celler - L	-g				
Wand	Bauteil	Fläche [m²]	U [W/(m²K)]	f_i [-]	f_FH [-]	Anteil FH [-]	LT [W/K]			
erdanliegender Boden STGH	EB Lift 0,50m U=0,39	25,91	0,39	0,500	1,000	0,00	5,05			
EW < 1,50m	3.4 EW 0,36m U=0,37	21,23	0,37	0,800	1,000	0,00	6,28			
EW > 1,50m	3.4 EW 0,36m U=0,37	82,66	0,37	0,600	1,000	0,00	18,35			
						Summe	29,69			
Leitwerte										
Hüllfläche AB						1655,09	m²			
Leitwert für Bauteile, die an Außen	luft grenzen (Le)					483,93	W/K			
Leitwert für bodenberührte Bauteile	e und Bauteile, die an unkonditionierte k	Celler grenzen	Lg			29,69	W/K			
Leitwert für Bauteile, die an unbeh	eizte Räume grenzen (Lu)					0,00	W/K			
Leitwertzuschlag für Wärmebrücke	n (detailliert lt. Baukörper) (informativ)					0,00	W/K			
Leitwertzuschlag für Wärmebrücke	n (pauschaler Zuschlag nach ÖNORM l	B 8110-6)				51,36	W/K			
Leitwert der Gebäudehülle LT 564,98 W/K										

QT

Transmissionsverluste

Projekt: MF_093-2019_Haas Datum: 15. November 2019

					Ki	ühlbed	darf	(RK)							
Kühlbedar	rf			18.261	[kWh	n]	Transmi	ssionsleitwert LT					564,98		[W/K]
Brutto-Gru	ındfläche E	BGF		1.035,36	[m²] Innentemp. Ti			mp. Ti					26,0		[C°]
Brutto-Vol	umen V			3.848,57	[m³]	[m³] Innere Gewinne q_ic It. Nu			Nutzungspr	ofil			3,75	5 [W/m²]	
Kühlbedar	f flächensp	oezifisch		17,64	[kWh/r	m²] S	Speiche	rkapazität C				1	15457,00		[Wh/K]
Kühlbedar	f volumens	spezifisch		4,74	[kWh/m³]										
Monat	Te [°C]	QT [kWh]	QV [kWh]	Verluste [kWh]	QI [kWh]	QS [kWh		Gewinne [kWh]	gamma [-]	LV [W/K]	tau [h]	a [-]	eta [-]	f_corr [-]	Qc [kWh]
1	-1,53	11.572	4.499	16.071	5.353		1.011	6.364	0,40	219,66	147,15	10,20	1,00	1,00	0
2	0,73	9.594	3.730	13.324	4.835		1.612	6.448	0,48	219,66	147,15	10,20	1,00	1,00	0
3	4,81	8.907	3.463	12.370	5.353		2.371	7.725	0,62	219,66	147,15	10,20	1,00	1,00	0
4	9,62	6.663	2.591	9.254	5.181		2.980	8.160	0,88	219,66	147,15	10,20	0,96	1,00	0
5	14,20	4.960	1.928	6.889	5.353		3.850	9.203	1,34	219,66	147,15	10,20	0,74	1,00	2.409
6	17,33	3.527	1.371	4.898	5.181		3.874	9.055	1,85	219,66	147,15	10,20	0,54	1,00	4.161
7	19,12	2.892	1.124	4.016	5.353		4.031	9.384	2,34	219,66	147,15	10,20	0,43	1,00	5.368
8	18,56	3.127	1.216	4.343	5.353		3.495	8.848	2,04	219,66	147,15	10,20	0,49	1,00	4.507
9	15,03	4.462	1.735	6.197	5.181		2.712	7.893	1,27	219,66	147,15	10,20	0,77	1,00	1.817
10	9,64	6.877	2.674	9.551	5.353		1.931	7.284	0,76	219,66	147,15	10,20	0,98	1,00	0
11	4,16	8.884	3.454	12.338	5.181		1.041	6.222	0,50	219,66	147,15	10,20	1,00	1,00	0
12	0,19	10.849	4.218	15.067	5.353		792	6.146	0,41	219,66	147,15	10,20	1,00	1,00	0
Summe		82.316	32.004	114.320	63.033	2	29.699	92.732							18.261

Te	Mittlere Außentemperatur	gamma	Gewinn / Verlust-Verhältnis
----	--------------------------	-------	-----------------------------

Lüftungsleitwert Q۷ Lüftungsverluste Gebäudezeitkonstante, tau = C / (LT + LV) tau

Verluste Transmissions- und Lüftungsverluste а numerischer Parameter, a = a0 + tau / tau0; a0 = 1, tau0 = 16 h

QS Solare Wärmegewinne eta Ausnutzungsgrad, eta = (1-gamma^a)/(1-gamma^(a+1)) bzw. a/(a+1) für gamma = 1

QI Innere Wärmegewinne Korrekturfaktor, abhängig von der Gebäudezeitkonstante f_corr

LV

Gewinne Solare und innere Wärmegewinne Qc Kühlbedarf

MF_093-2019_Haas Projekt: Datum: 15. November 2019

	Kühlbedarf (SK)														
Kühlbedar	f			14.7	'00 [kW	h] Trans	missionsleitwert L7	Γ				564,98		[W/K]	
Brutto-Gru	ındfläche E	BGF		1.035,	,36 [m²] Inner	temp. Ti					26,0		[C°]	
Brutto-Vol	umen V			3.848,	,57 [m ³] Inner	e Gewinne q_ic It. I	Nutzungspr	ofil			3,75	75 [W/m²]		
Kühlbedar	f flächens	pezifisch		14,	,20 [kWh/	[kWh/m²] Speicherkapazität C			,	115457,00)	[Wh/K]			
Kühlbedar	f volumen:	spezifisch		3,	,82 [kWh/	[kWh/m³]									
Monat	Te [°C]	QT [kWh]	QV [kWh]	Verluste [kWh]	QI [kWh]	QS [kWh]	Gewinne [kWh]	gamma [-]	LV [W/K]	tau [h]	a [-]	eta [-]	f_corr [-]	Qc [kWh]	
1	-2,91	12.154	4.725	16.879	5.353	1.17	7 6.530	0,39	219,66	147,15	10,20	1,00	1,00	0	
2	-0,44	10.039	3.903	13.942	4.835	1.72	6.562	0,47	219,66	147,15	10,20	1,00	1,00	0	
3	3,56	9.433	3.668	13.101	5.353	2.48	7.837	0,60	219,66	147,15	10,20	1,00	1,00	0	
4	8,29	7.206	2.802	10.008	5.181	3.04	8.227	0,82	219,66	147,15	10,20	0,97	1,00	0	
5	12,89	5.510	2.142	7.652	5.353	3.78	9.140	1,19	219,66	147,15	10,20	0,81	1,00	1.723	
6	16,06	4.044	1.572	5.617	5.181	3.78	8.970	1,60	219,66	147,15	10,20	0,62	1,00	3.371	
7	17,70	3.487	1.356	4.843	5.353	3.99	9.352	1,93	219,66	147,15	10,20	0,52	1,00	4.512	
8	17,04	3.766	1.464	5.230	5.353	3.60	4 8.957	1,71	219,66	147,15	10,20	0,58	1,00	3.736	
9	13,80	4.963	1.929	6.892	5.181	2.80	7.989	1,16	219,66	147,15	10,20	0,83	1,00	1.357	
10	8,66	7.287	2.833	10.120	5.353	1.98	7.342	0,73	219,66	147,15	10,20	0,99	1,00	0	
11	2,92	9.387	3.650	13.037	5.181	1.26	6.447	0,49	219,66	147,15	10,20	1,00	1,00	0	
12	-1,45	11.540	4.487	16.027	5.353	92	6.274	0,39	219,66	147,15	10,20	1,00	1,00	0	
Summe		88.815	34.531	123.346	63.033	30.59	93.627							14.699	

Te	Mittlere Außentemperatur	gamma	Gewinn / Verlust-Verhältnis
----	--------------------------	-------	-----------------------------

QT LV Transmissionsverluste Lüftungsleitwert

Q۷ Lüftungsverluste Gebäudezeitkonstante, tau = C / (LT + LV) tau

Verluste Transmissions- und Lüftungsverluste а numerischer Parameter, a = a0 + tau / tau0; a0 = 1, tau0 = 16 h

QS Solare Wärmegewinne eta Ausnutzungsgrad, eta = (1-gamma^a)/(1-gamma^(a+1)) bzw. a/(a+1) für gamma = 1

QI Innere Wärmegewinne Korrekturfaktor, abhängig von der Gebäudezeitkonstante f_corr

Gewinne Solare und innere Wärmegewinne Qc Kühlbedarf

				Auß	eninduzi	erter Kü	hlbedarf K	B* (RK	()					
Kühlbedarf				6	671 [kW	h] Tra	Transmissionsleitwert LT				564,98		[W/K]	
Brutto-Grundfläche BGF			1.035	,36 [m²	lnn	Innentemp. Ti				26,0		[C°]		
Brutto-Volumen V			3.848	,57 [m ³] Inn	Innere Gewinne q_ic lt. Nutzungsprofil				3,75		[W/m²]		
Kühlbedarf flächenspezifisch			0	,65 [kWh/	m²] Spe	Speicherkapazität C				115457,00		[Wh/K]		
Kühlbedarf volumenspezifisch			0	,17 [kWh/	[kWh/m³]							•		
Monat	Te [°C]	QT [kWh]	QV [kWh]	Verluste [kWh]	QI [kWh]	QS [kWh]	Gewinne [kWh]	gamma [-]	LV [W/K]	tau [h]	a [-]	eta [-]	f_corr [-]	Qc [kWh]
1	-1,53	11.572	2.250	13.822	0	1.0	11 1.01	1 0,07	109,83	171,09	11,69	1,00	1,00	0
2	0,73	9.594	1.865	11.459	0	1.6	12 1.612	0,14	109,83	171,09	11,69	1,00	1,00	0
3	4,81	8.907	1.732	10.639	0	2.3	71 2.37	0,22	109,83	171,09	11,69	1,00	1,00	0
4	9,62	6.663	1.295	7.958	0	2.9	80 2.980	0,37	109,83	171,09	11,69	1,00	1,00	0
5	14,20	4.960	964	5.924	0	3.8	3.850	0,65	109,83	171,09	11,69	1,00	1,00	0
6	17,33	3.527	686	4.212	0	3.8	74 3.874	0,92	109,83	171,09	11,69	0,95	1,00	0
7	19,12	2.892	562	3.454	0	4.0	31 4.03°	1,17	109,83	171,09	11,69	0,83	1,00	671
8	18,56	3.127	608	3.735	0	3.4	95 3.495	0,94	109,83	171,09	11,69	0,95	1,00	0
9	15,03	4.462	867	5.330	0	2.7	12 2.712	0,51	109,83	171,09	11,69	1,00	1,00	0
10	9,64	6.877	1.337	8.214	0	1.9	31 1.93°	0,24	109,83	171,09	11,69	1,00	1,00	0
11	4,16	8.884	1.727	10.611	0	1.0	41 1.04	0,10	109,83	171,09	11,69	1,00	1,00	0
12	0,19	10.849	2.109	12.958	0	7	92 792	0,06	109,83	171,09	11,69	1,00	1,00	0
Summe		82.316	16.002	98.318	0	29.6	99 29.699)						671

Te	Mittlere Außentemperatur	gamma	Gewinn/Verlust Verhältnis
----	--------------------------	-------	---------------------------

QT LV Transmissionsverluste Lüftungsleitwert

Q۷ Lüftungsverluste Gebäudezeitkonstante, tau = C / (LT + LV) tau

Verluste Transmissions- und Lüftungsverluste а numerische Parameter, a = a0 + tau / tau0; a0 = 1, tau0 = 16 h

QS Solare Wärmegewinne eta Ausnutzungsgrad, eta = (1-gamma^a)/(1-gamma^(a+1)) bzw. a/(a+1) für gamma = 1

QI Innere Wärmegewinne Korrekturfaktor, abhängig von der Gebäudezeitkonstante f_corr

Gewinne Solare und innere Wärmegewinne Qc Kühlbedarf

Projekt: MF_093-2019_Haas Datum: 15. November 2019

				Auße	ninduzie	erter Kü	hlbedarf K	B* (SK	()					
Kühlbedar	f			([kWh	n] Tra	nsmissionsleitwert L	Т				564,98		[W/K]
Brutto-Gru	ındfläche E	BGF		1.035,36	[m²]] Inn	entemp. Ti					26,0		[C°]
Brutto-Vol	umen V			3.848,57	7 [m³]] Inn	ere Gewinne q_ic It.	Nutzungspi	ofil			3,75		[W/m²]
Kühlbedar	f flächens	pezifisch		0,00	(kWh/r	m²] Spe	icherkapazität C				1	15457,00		[Wh/K]
Kühlbedar	f volumens	spezifisch		0,00	(kWh/r	m³]								
Monat	Te [°C]	QT [kWh]	QV [kWh]	Verluste [kWh]	QI QS Gewinne gamma LV [kWh] [kWh] [-] [W/K]						a [-]	eta [-]	f_corr [-]	Qc [kWh]
1	-2,91	12.154	2.363	14.516	0	1.1	77 1.177	0,08	109,83	171,09	11,69	1,00	1,00	0
2	-0,44	10.039	1.951	11.990	0	1.7	26 1.726	0,14	109,83	171,09	11,69	1,00	1,00	0
3	3,56	9.433	1.834	11.267	0	2.4	83 2.483	0,22	109,83	171,09	11,69	1,00	1,00	0
4	8,29	7.206	1.401	8.607	0	3.0	46 3.046	0,35	109,83	171,09	11,69	1,00	1,00	0
5	12,89	5.510	1.071	6.581	0	3.7	86 3.786	0,58	109,83	171,09	11,69	1,00	1,00	0
6	16,06	4.044	786	4.830	0	3.7	89 3.789	0,78	109,83	171,09	11,69	0,99	1,00	0
7	17,70	3.487	678	4.165	0	3.9	99 3.999	0,96	109,83	171,09	11,69	0,94	1,00	0
8	17,04	3.766	732	4.498	0	3.6	04 3.604	0,80	109,83	171,09	11,69	0,98	1,00	0
9	13,80	4.963	965	5.927	0	2.8	08 2.808	0,47	109,83	171,09	11,69	1,00	1,00	0
10	8,66	7.287	1.417	8.703	0	1.9	88 1.988	0,23	109,83	171,09	11,69	1,00	1,00	0
11	2,92	9.387	1.825	11.212	0	1.2	66 1.266	0,11	109,83	171,09	11,69	1,00	1,00	0
12	-1,45	11.540	2.243	13.783	0	(20 920	0,07	109,83	171,09	11,69	1,00	1,00	0
Summe		88.815	17.265	106.081	0	30.5	94 30.594	l l						0

Te	Mittlere Außentemperatur	gamma	Gewinn/Verlust Verhältnis
----	--------------------------	-------	---------------------------

QT LV Transmissionsverluste Lüftungsleitwert

Q۷ Lüftungsverluste Gebäudezeitkonstante, tau = C / (LT + LV) tau

Verluste Transmissions- und Lüftungsverluste а numerische Parameter, a = a0 + tau / tau0; a0 = 1, tau0 = 16 h

QS Solare Wärmegewinne eta Ausnutzungsgrad, eta = (1-gamma^a)/(1-gamma^(a+1)) bzw. a/(a+1) für gamma = 1

QI Innere Wärmegewinne Korrekturfaktor, abhängig von der Gebäudezeitkonstante f_corr

Gewinne Solare und innere Wärmegewinne Qc Kühlbedarf

Projekt: MF_093-2019_Haas Datum: 15. November 2019

	Solare Aufnahm	nefläc	hen u	nd Wa	ärmege	winne	e für K	ühlb	edarf	(SK)			
Erklärung ob detailliert oder v	ereinfacht												
Wand	Fenster/Tür	Anzahl	Richtung [°]	Neigung [°]	Fläche [m²]	gw [-]	Glasanteil [%]	F_s_W [-]	F_s_S [-]	F_c [-]	A_trans_W [m²]	A_trans_S [m²]	Qs [kWh]
AW neu Lift EG-OG2 - ONO	AF 2,67/9,04m U=1,35 STGH Portal ONO	1	71	90	30,22	0,51	79	0,75	0,75	0,15	8,71	8,19	4885,48
AW neu Lift EG-OG2 - WSW	AT 1,00/2,00m U=1,42	1	251	90	2,00	0,54	69	0,75	0,75	0,15	0,53	0,50	387,31
AW neu Lift EG-OG2 - NNW	AF 2,67/8,30m U=1,36 STGH Portal NNW	1	341	90	22,16	0,51	79	0,75	0,75	0,15	8,99	8,99	3939,05
AW EG Bestand SAN - ONO	AF 1,10/2,20m U=0,92	1	71	90	2,42	0,43	72	0,75	0,75	0,15	0,54	0,50	300,84
AW EG Bestand SAN - ONO	AF 1,80/2,20m U=0,94	1	71	90	3,96	0,43	72	0,75	0,75	0,15	0,88	0,83	492,29
AW EG Bestand SAN - SSO	AF 1,80/2,20m U=0,94	3	161	90	3,96	0,43	72	0,75	0,75	0,15	1,48	1,60	1331,84
AW EG Bestand SAN - NNW	AF 1,80/1,30m U=0,97	2	341	90	2,34	0,43	66	0,75	0,75	0,15	1,34	1,34	589,18
AW EG Bestand SAN - NNW	AF 1,20/0,80m U=1,01	2	341	90	0,96	0,43	59	0,75	0,75	0,15	0,49	0,49	215,34
AW OG1 Bestand SAN - ONO	AF 1,10/2,20m U=0,92	1	71	90	2,42	0,43	72	0,75	0,75	0,15	0,54	0,50	300,84
AW OG1 Bestand SAN - ONO	AF 1,80/2,20m U=0,94	1	71	90	3,96	0,43	72	0,75	0,75	0,15	0,88	0,83	492,29
AW OG1 Bestand SAN - SSO	AF 1,80/2,20m U=0,94	3	161	90	3,96	0,43	72	0,75	0,75	0,15	1,48	1,60	1331,84
AW OG1 Bestand SAN - SSO	AT 1,10/2,20m U=1,40	1	161	90	2,42	0,54	72	0,75	0,75	0,15	0,37	0,40	335,75
AW OG1 Bestand SAN - SSO	AF 1,20/0,80m U=1,01	2	161	90	0,96	0,43	59	0,75	0,75	0,15	0,20	0,21	177,01
AW OG1 Bestand SAN - SSO	AF 1,10/2,20m U=0,92	1	161	90	2,42	0,43	72	0,75	0,75	0,15	0,30	0,33	271,30
AW OG1 Bestand SAN - SSO	AF 1,60/2,20m U=0,88	1	161	90	3,52	0,43	78	0,75	0,75	0,15	0,47	0,51	425,45
AW OG1 Bestand SAN - WSW	AF 1,10/2,20m U=0,92	2	251	90	2,42	0,43	72	0,75	0,75	0,15	1,07	1,01	782,43
AW OG1 Bestand SAN - WSW	AF 1,60/2,20m U=0,88	2	251	90	3,52	0,43	78	0,75	0,75	0,15	1,68	1,58	1226,99
AW OG1 Bestand SAN - WSW	AF 1,80/2,20m U=0,94	1	251	90	3,96	0,43	72	0,75	0,75	0,15	0,88	0,83	640,17
AW OG1 Bestand SAN - NNW	AF 1,80/1,30m U=0,97	5	341	90	2,34	0,43	66	0,75	0,75	0,15	3,36	3,36	1472,95

F_s_W Verschattungsfaktor Winter

A_trans_W Transparente Aufnahmefläche Winter

gw wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98)

F_s_S A_trans_W Verschattungsfaktor Sommer Transparente Aufnahmefläche Sommer

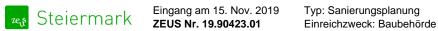
Qs Solarer Wärmegewinn

Projekt: MF_093-2019_Haas Datum: 15. November 2019

	Solare Aufnahmeflächen und Wärmegewinne für Kühlbedarf (SK)														
Erklärung ob detailliert oder	vereinfacht														
Wand	Fenster/Tür	Anzahl	Richtung [°]	Neigung [°]	Fläche [m²]	gw [-]	Glasanteil [%]	F_s_W [-]	F_s_S [-]	F_c [-]	A_trans_W [m²]	A_trans_S [m²]	Qs [kWh]		
AW OG1 Bestand SAN - NNW	AF 1,20/0,80m U=1,01	2	341	90	0,96	0,43	59	0,75	0,75	0,15	0,49	0,49	215,34		
AW OG1 Bestand SAN - NNW	AF 1,10/2,20m U=0,92	1	341	90	2,42	0,43	72	0,75	0,75	0,15	0,75	0,75	330,05		
AW OG1 NEU - ONO	AF 1,00/0,80m U=1,03	1	71	90	0,80	0,43	57	0,75	0,75	0,15	0,14	0,13	78,11		
AW OG1 NEU - ONO	AF 1,10/2,20m U=0,92	1	71	90	2,42	0,43	72	0,75	0,75	0,15	0,54	0,50	300,84		
AW OG1 NEU - ONO	AF 1,60/1,30m U=0,99	1	71	90	2,08	0,43	64	0,75	0,75	0,15	0,41	0,39	231,23		
AW OG1 NEU - SSO	AF 1,60/1,30m U=0,99	2	161	90	2,08	0,43	64	0,75	0,75	0,15	0,46	0,50	417,04		
AW OG1 NEU - WSW	AF 1,60/1,30m U=0,99	1	251	90	2,08	0,43	64	0,75	0,75	0,15	0,41	0,39	300,68		
AW OG1 NEU - WSW	AF 1,80/1,30m U=0,97	2	251	90	2,34	0,43	66	0,75	0,75	0,15	0,96	0,90	698,36		
AW OG1 NEU - WSW	AF 1,20/0,80m U=1,01	1	251	90	0,96	0,43	59	0,75	0,75	0,15	0,17	0,16	127,62		
AW OG1 NEU - NNW	AT 1,10/2,20m U=1,40	1	341	90	2,42	0,54	72	0,75	0,75	0,15	0,94	0,94	410,88		
AW OG2 NEU - ONO	AF 2,70/2,40m U=0,88	2	71	90	6,48	0,43	79	0,75	0,75	0,15	3,14	2,95	1761,55		
AW OG2 NEU - SSO	AF 1,80/2,40m U=0,86	1	161	90	4,32	0,43	80	0,75	0,75	0,15	0,59	0,64	536,31		
AW OG2 NEU - SSO	AF 2,70/2,40m U=0,88	2	161	90	6,48	0,43	79	0,75	0,75	0,15	1,76	1,91	1588,57		
AW OG2 NEU - SSO	AF 1,20/2,40m U=0,90	1	161	90	2,88	0,43	74	0,75	0,75	0,15	0,37	0,40	332,65		
AW OG2 NEU - WSW	AF 2,70/2,40m U=0,88	2	251	90	6,48	0,43	79	0,75	0,75	0,15	3,14	2,95	2290,70		
AW OG2 NEU - WSW	AF 1,80/2,40m U=0,86	1	251	90	4,32	0,43	80	0,75	0,75	0,15	1,06	1,00	773,35		
AW OG2 NEU - NNW	AF 1,20/0,80m U=1,01	2	341	90	0,96	0,43	59	0,75	0,75	0,15	0,49	0,49	215,34		
AW neu Lift - UG - ONO	AT 1,20/2,20m U=1,45	1	71	90	2,64	0,54	68	0,75	0,75	0,15	0,69	0,65	386,82		

Verschattungsfaktor Winter F_s_W

A_trans_W Transparente Aufnahmefläche Winter


wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98)

F_s_S Verschattungsfaktor Sommer A_trans_W

Transparente Aufnahmefläche Sommer

Qs Solarer Wärmegewinn

9. .	cac. Cocamonorg.caa.c.maccgraa (g. C.c. c.		ασ	00.0.0.	···aogo						
	Solare Aufna	hmeflä	chen Ve	erschat	tung f	ür Kühlb	edar	f (SK)			
Erklärung											
Wand	Fenster/Tür	Тур	Horizontal- Winkel [°]	Überhang- Winkel [°]	Seiten- Winkel [°]	F_h_W F_h_9	S F_o_V [-]	F_o_S F_f_ [-] [-]		F_s_W F_s_ [-]	F_s_S direkt [-]
Typ F_h_W F_o_W F_f_W F_s_W F_s_W direkt	Eingabetyp des Verschattungsfaktors (vereinfacht/ Verschattungsfaktor für Horizontüberhöhung Winte Verschattungsfaktor für horizontale Überstände Winte Verschattungsfaktor für vertikale Überstände Winte Verschattungsfaktor Winter Verschattungsfaktor bei direkter Eingabe Winter	r nter	kt)	F_h_S F_o_S F_f_S F_s_S F_s_S	\ \ \	/erschattungsfak /erschattungsfak /erschattungsfak /erschattungsfak /erschattungsfak	tor für ho tor für ve tor Somn	rizontale Über rtikale Überstä ner	stände So inde Somn	mmer	

Projekt: MF_093-2019_Haas Datum: 15. November 2019

	Solare Aufna	ahmefläd	chen Ve	erschat	tung fi	ir Kü	ihlbeda	arf (SK)					
Erklärung														
Wand	Fenster/Tür	Тур	Horizontal- Winkel [°]	Überhang- Winkel [°]	Seiten- Winkel [°]	F_h_W [-]	F_h_S F_0 [-] [o_W F_o_S -] [-]	F_f_W [-]	F_f_S [-]	F_s_W [-]	F_s_S [-]	F_s_W direkt [-]	F_s_S direkt [-]
AW neu Lift EG-OG2 - ONO	AF 2,67/9,04m U=1,35 STGH Portal ONO	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW neu Lift EG-OG2 - WSW	AT 1,00/2,00m U=1,42	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW neu Lift EG-OG2 - NNW	AF 2,67/8,30m U=1,36 STGH Portal NNW	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	_
AW EG Bestand SAN - ONO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW EG Bestand SAN - ONO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW EG Bestand SAN - SSO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW EG Bestand SAN - NNW	AF 1,80/1,30m U=0,97	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW EG Bestand SAN - NNW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - ONO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - ONO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AT 1,10/2,20m U=1,40	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - SSO	AF 1,60/2,20m U=0,88	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - WSW	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - WSW	AF 1,60/2,20m U=0,88	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - WSW	AF 1,80/2,20m U=0,94	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - NNW	AF 1,80/1,30m U=0,97	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - NNW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 Bestand SAN - NNW	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 NEU - ONO	AF 1,00/0,80m U=1,03	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 NEU - ONO	AF 1,10/2,20m U=0,92	vereinfacht	-	-	-	-	-	-		-	0.75	0.75	-	
AW OG1 NEU - ONO	AF 1,60/1,30m U=0,99	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-
AW OG1 NEU - SSO	AF 1,60/1,30m U=0,99	vereinfacht	-	-			-		-	-	0.75	0.75	-	
AW OG1 NEU - WSW	AF 1,60/1,30m U=0,99	vereinfacht	-	-	-	-	-		-	-	0.75	0.75	-	-

Тур	Eingabetyp des Verschattungsfaktors (vereinfacht/detailliert/direkt)		
F_h_W	Verschattungsfaktor für Horizontüberhöhung Winter	F_h_S	Verschattungsfaktor für Horizontüberhöhung Sommer
F_o_W	Verschattungsfaktor für horizontale Überstände Winter	F_o_S	Verschattungsfaktor für horizontale Überstände Sommer
F_f_W	Verschattungsfaktor für vertikale Überstände Winter	F_f_S	Verschattungsfaktor für vertikale Überstände Sommer
F_s_W	Verschattungsfaktor Winter	F_s_S	Verschattungsfaktor Sommer
F_s_W direkt	Verschattungsfaktor bei direkter Eingabe Winter	F_s_S direkt	Verschattungsfaktor bei direkter Eingabe Sommer

15. November 2019 Projekt: MF_093-2019_Haas Datum:

	Solare Aufnahmeflächen Verschattung für Kühlbedarf (SK)														
Erklärung															
Wand	Fenster/Tür	Тур	Horizontal- Winkel [°]	Überhang- Winkel [°]	Seiten- Winkel [°]	F_h_W [-]	F_h_S [-]	F_o_W F_ [-]	_o_S [-]	F_f_W [-]	F_f_S [-]	F_s_W [-]	F_s_S [-]	F_s_W direkt [-]	F_s_S direkt [-]
AW OG1 NEU - WSW	AF 1,80/1,30m U=0,97	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 NEU - WSW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG1 NEU - NNW	AT 1,10/2,20m U=1,40	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - ONO	AF 2,70/2,40m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - SSO	AF 1,80/2,40m U=0,86	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - SSO	AF 2,70/2,40m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - SSO	AF 1,20/2,40m U=0,90	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - WSW	AF 2,70/2,40m U=0,88	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - WSW	AF 1,80/2,40m U=0,86	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW OG2 NEU - NNW	AF 1,20/0,80m U=1,01	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-
AW neu Lift - UG - ONO	AT 1,20/2,20m U=1,45	vereinfacht	-	-	-	-	-	-	-	-	-	0.75	0.75	-	-

Тур	Eingabetyp des Verschattungsfaktors (vereinfacht/detailliert/direkt)		
F_h_W	Verschattungsfaktor für Horizontüberhöhung Winter	F_h_S	Verschattungsfaktor für Horizontüberhöhung Sommer
F_o_W	Verschattungsfaktor für horizontale Überstände Winter	F_o_S	Verschattungsfaktor für horizontale Überstände Sommer
F_f_W	Verschattungsfaktor für vertikale Überstände Winter	F_f_S	Verschattungsfaktor für vertikale Überstände Sommer
F_s_W	Verschattungsfaktor Winter	F_s_S	Verschattungsfaktor Sommer
F_s_W direkt	Verschattungsfaktor bei direkter Eingabe Winter	F_s_S direkt	Verschattungsfaktor bei direkter Eingabe Sommer

Steiermark

15. November 2019

Projekt: MF_093-2019_Haas Datum:

			Solar	e Gew	inne t	ranspa	arent fü	ir Küh	lbedarf	(SK)	[kWh]		
	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Summe
00001. AW neu Lift EG-OG2 - ONO AF 2,67/9,04m U=1,35 STGH Portal ONO	148	236	388	497	653	661	697	609	436	287	162	110	4.885
00002. AW neu Lift EG-OG2 - WSW AT 1,00/2,00m U=1,42	17	24	34	38	45	44	47	44	35	28	18	13	387
00003. AW neu Lift EG-OG2 - NNW AF 2,67/8,30m U=1,36 STGH Portal NNW	119	179	275	401	541	574	592	479	349	208	131	91	3.939
00004. AW EG Bestand SAN - ONO AF 1,10/2,20m U=0,92	9	15	24	31	40	41	43	38	27	18	10	7	301
00005. AW EG Bestand SAN - ONO AF 1,80/2,20m U=0,94	15	24	39	50	66	67	70	61	44	29	16	11	492
00006. AW EG Bestand SAN - SSO AF 1,80/2,20m U=0,94	72	96	117	128	137	127	139	144	133	105	75	59	1.332
00007. AW EG Bestand SAN - NNW AF 1,80/1,30m U=0,97	18	27	41	60	81	86	89	72	52	31	20	14	589
00008. AW EG Bestand SAN - NNW AF 1,20/0,80m U=1,01	6	10	15	22	30	31	32	26	19	11	7	5	215
00009. AW OG1 Bestand SAN - ONO AF 1,10/2,20m U=0,92	9	15	24	31	40	41	43	38	27	18	10	7	301
00010. AW OG1 Bestand SAN - ONO AF 1,80/2,20m U=0,94	15	24	39	50	66	67	70	61	44	29	16	11	492
00011. AW OG1 Bestand SAN - SSO AF 1,80/2,20m U=0,94	72	96	117	128	137	127	139	144	133	105	75	59	1.332
00012. AW OG1 Bestand SAN - SSO AT 1,10/2,20m U=1,40	18	24	30	32	35	32	35	36	33	26	19	15	336
00013. AW OG1 Bestand SAN - SSO AF 1,20/0,80m U=1,01	10	13	16	17	18	17	18	19	18	14	10	8	177
00014. AW OG1 Bestand SAN - SSO AF 1,10/2,20m U=0,92	15	20	24	26	28	26	28	29	27	21	15	12	271
00015. AW OG1 Bestand SAN - SSO AF 1,60/2,20m U=0,88	23	31	37	41	44	40	44	46	42	34	24	19	425
00016. AW OG1 Bestand SAN - WSW AF 1,10/2,20m U=0,92	34	49	69	76	91	89	94	89	71	57	36	27	782
00017. AW OG1 Bestand SAN - WSW AF 1,60/2,20m U=0,88	53	77	109	120	143	140	147	140	112	89	56	42	1.227
00018. AW OG1 Bestand SAN - WSW AF 1,80/2,20m U=0,94	28	40	57	62	75	73	77	73	58	46	29	22	640
00019. AW OG1 Bestand SAN - NNW AF 1,80/1,30m U=0,97	44	67	103	150	202	215	221	179	131	78	49	34	1.473
00020. AW OG1 Bestand SAN - NNW AF 1,20/0,80m U=1,01	6	10	15	22	30	31	32	26	19	11	7	5	215

00021. AW OG1 Bestand SAN - NNW AF 1,10/2,20m U=0,92	10	15	23	34	45	48	50	40	29	17	11	8	330
00022. AW OG1 NEU - ONO AF 1,00/0,80m U=1,03	2	4	6	8	10	11	11	10	7	5	3	2	78
00023. AW OG1 NEU - ONO AF 1,10/2,20m U=0,92	9	15	24	31	40	41	43	38	27	18	10	7	301
00024. AW OG1 NEU - ONO AF 1,60/1,30m U=0,99	7	11	18	24	31	31	33	29	21	14	8	5	231
00025. AW OG1 NEU - SSO AF 1,60/1,30m U=0,99	22	30	37	40	43	40	43	45	42	33	24	18	417
00026. AW OG1 NEU - WSW AF 1,60/1,30m U=0,99	13	19	27	29	35	34	36	34	27	22	14	10	301
00027. AW OG1 NEU - WSW AF 1,80/1,30m U=0,97	30	44	62	68	81	79	84	80	64	51	32	24	698
00028. AW OG1 NEU - WSW AF 1,20/0,80m U=1,01	6	8	11	12	15	15	15	15	12	9	6	4	128
00029. AW OG1 NEU - NNW AT 1,10/2,20m U=1,40	12	19	29	42	56	60	62	50	36	22	14	9	411
00030. AW OG2 NEU - ONO AF 2,70/2,40m U=0,88	53	85	140	179	236	238	251	220	157	104	59	40	1.762
00031. AW OG2 NEU - SSO AF 1,80/2,40m U=0,86	29	39	47	52	55	51	56	58	53	42	30	24	536
00032. AW OG2 NEU - SSO AF 2,70/2,40m U=0,88	85	115	140	153	164	151	166	172	158	125	90	70	1.589
00033. AW OG2 NEU - SSO AF 1,20/2,40m U=0,90	18	24	29	32	34	32	35	36	33	26	19	15	333
00034. AW OG2 NEU - WSW AF 2,70/2,40m U=0,88	99	144	203	223	267	261	275	261	209	166	105	78	2.291
00035. AW OG2 NEU - WSW AF 1,80/2,40m U=0,86	33	49	69	75	90	88	93	88	70	56	36	26	773
00036. AW OG2 NEU - NNW AF 1,20/0,80m U=1,01	6	10	15	22	30	31	32	26	19	11	7	5	215
00037. AW neu Lift - UG - ONO AT 1,20/2,20m U=1,45	12	19	31	39	52	52	55	48	35	23	13	9	387
Summe	1.177	1.726	2.483	3.046	3.786	3.789	3.999	3.604	2.808	1.988	1.266	920	30.594

Projekt: MF_093-2019_Haas Datum: 15. November 2019

		Lüftun	gsverlu	ıste für	Heizwä	rmebed	darf (SK	() [kWh]		
Monat	n L [1/h]	t Nutz,d [h/d]	d Nutz [d/M]	t [h/M]	n L,m [1/h]	BGF [m²]	V V [m³]	c p,I . rho L [Wh/(m³·K)]	LV FL [W/K]	QV FL [kWh]
Jan	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	3.745
Feb	0,60	12,00	28,00	672,00	0,300	1035,36	2153,55	0,34	219,66	3.017
Mär	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	2.687
Apr	0,60	12,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	1.853
Mai	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	1.162
Jun	0,60	12,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	623
Jul	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	375
Aug	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	483
Sep	0,60	12,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	981
Okt	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	1.853
Nov	0,60	12,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	2.701
Dez	0,60	12,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	3.506
									Summe	22.985

n L Hygienisch erforderliche Luftwechselrate

t Nutz,d Tägliche Nutzungszeit d Nutz Nutzungstage im Monat Monatliche Gesamtzeit n L,m Mittlere Luftwechselrate BGF Brutto-Grundfläche

VVEnergetisch wirksames Luftvolumen

c p,I . rho L Wärmekapazität der Luft

LV FL Lüftungs-Leitwert Fenster-Lüftung QV FL Lüftungsverlust Fenster-Lüftung

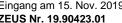
Projekt: MF_093-2019_Haas Datum: 15. November 2019

	Lüftungsverluste für Kühlbedarf (SK) [kWh]											
Monat	n L [1/h]	n L,NL [1/h]	t Nutz,d [h/d]	t NL,d [h/d]	d Nutz [d/M]	t [h/M]	n L,m [1/h]	BGF [m²]	V V [m³]	c p,I . rho L [Wh/(m³·K)]	LV FL [W/K]	QV FL [kWh]
Jan	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	4.725
Feb	0,60	1,50	12,00	8,00	28,00	672,00	0,300	1035,36	2153,55	0,34	219,66	3.903
Mär	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	3.668
Apr	0,60	1,50	12,00	8,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	2.802
Mai	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	2.142
Jun	0,60	1,50	12,00	8,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	1.572
Jul	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	1.356
Aug	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	1.464
Sep	0,60	1,50	12,00	8,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	1.929
Okt	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	2.833
Nov	0,60	1,50	12,00	8,00	30,00	720,00	0,300	1035,36	2153,55	0,34	219,66	3.650
Dez	0,60	1,50	12,00	8,00	31,00	744,00	0,300	1035,36	2153,55	0,34	219,66	4.487
											Summe	34.531

n L Hygienisch erforderliche Luftwechselrate

n L,NL Zusätzlich wirksame Luftwechselrate bei Nachtlüftung

t Nutz,d Tägliche Nutzungszeit


t NL,d Tägliche Nutzungszeit der Nachtlüftung

d Nutz Nutzungstage im Monat t Monatliche Gesamtzeit n L,m Mittlere Luftwechselrate BGF Brutto-Grundfläche

V V Energetisch wirksames Luftvolumen

c p,l . rho L Wärmekapazität der Luft

LV FL Lüftungs-Leitwert Fenster-Lüftung
QV FL Lüftungsverlust Fenster-Lüftung

15. November 2019 Projekt: MF_093-2019_Haas Datum:

	OI3-I	ndex nad	ch Leitfac	den 1.7		
Bauteil	Bauteil-Art	Fläche A	Wärmed koeffiz. U	PEI	GWP	AF
		[m²]	[W/m²K]	[MJ]	[kg CO2]	[kg SO2]
1.1 TD EG 0,40m U=0,38	Trenndecke	561,78	0,38	716.354,8	62.900,4	246,6
TD STGH 0,27m U=2,58	Trenndecke	77,73	2,58	84.456,2	8.406,0	28,9
1.1a TD OG1 neu 0,50m U=0,37	Trenndecke	131,90	0,37	205.232,4	19.611,9	74,4
1.2 TD OG2 0,70m U=0,27	Trenndecke	238,05	0,27	415.069,4	37.554,8	149,9
2.2 FD bei OG1 neu 0,47m U=0,17	Dach ohne Hinterlüftung	131,90	0,17	165.674,4	12.524,2	52,6
2.4 FD OG1 ü. Bestand 0,56m U=0,16	Dach ohne Hinterlüftung	134,85	0,16	223.816,1	19.149,8	75,4
3.3 AW Lift EG-OG2 0,37m U=0,27	Außenwand	82,72	0,27	69.421,2	4.108,6	16,4
3.1a AW BESTAND-SAN 0,48m U=0,21	Außenwand	364,44	0,21	448.126,1	25.232,5	103,4
3.1b AW NEU OG1 0,46m U=0,20	Außenwand	152,92	0,20	154.799,1	9.052,0	36,1
3.2 AW OG2 0,42m U=0,22	Außenwand	154,68	0,22	80.646,6	7.771,3	19,6
2.1 FD 0,58m U=0,16	Dach ohne Hinterlüftung	263,96	0,16	380.718,2	28.665,1	122,4
EB Lift 0,50m U=0,39	erdanliegender Fußboden	25,91	0,39	44.656,1	4.233,5	15,0
3.4 AW - UG Lift 0,36m U=0,34	Außenwand	25,60	0,34	27.156,6	2.660,4	9,9
3.4 EW 0,36m U=0,37	erdanliegende Wand	103,89	0,37	159.660,0	11.726,7	47,1
AF 2,67/9,04m U=1,35 STGH Portal ONO	Außenfenster	30,22	1,36	34.093,9	1.411,7	11,5
AT 1,00/2,00m U=1,42	Außentür	2,00	1,42	3.020,5	124,5	0,9
AF 2,67/8,30m U=1,36 STGH Portal NNW	Außenfenster	22,16	1,36	24.974,6	1.034,1	8,5
AF 1,10/2,20m U=0,92	Außenfenster	16,94	0,92	25.641,7	1.072,6	8,7
AF 1,80/2,20m U=0,94	Außenfenster	35,64	0,94	53.947,6	2.256,7	18,4
AF 1,80/1,30m U=0,97	Außenfenster	21,06	0,97	36.025,8	1.501,5	11,8
AF 1,20/0,80m U=1,01	Außenfenster	8,64	1,01	17.008,3	706,2	5,3
AT 1,10/2,20m U=1,40	Außentür	4,84	1,40	6.824,0	281,5	2,2
AF 1,60/2,20m U=0,88	Außenfenster	10,56	0,88	13.872,2	583,1	5,0
AF 1,00/0,80m U=1,03	Außenfenster	0,80	1,03	1.650,5	68,5	0,5
AF 1,60/1,30m U=0,99	Außenfenster	8,32	0,99	14.846,9	618,1	4,8
AF 2,70/2,40m U=0,88	Außenfenster	38,88	0,88	49.557,9	2.085,5	18,0
AF 1,80/2,40m U=0,86	Außenfenster	8,64	0,86	10.702,8	450,9	3,9
AF 1,20/2,40m U=0,90	Außenfenster	2,88	0,90	4.136,1	173,3	1,4
AT 1,20/2,20m U=1,45	Außentür	2,64	1,45	4.101,8	169,0	1,3
Summen		2.664,54		3.476.191,0	266.134,5	1.099,9

115. Nov. 2019 Typ: Sanierungsplanung 9.90423.01 Typ: Sanierungsplanung Einreichzweck: Baubehörde

Projekt: MF_093-2019_Haas Datum: 15. November 2019

OI3-I	ndey	nach	Leitfade	n 1 7
OIJ-I	HUEA	Hath	Leillaue	

PEI(Primärenergiegehalt nicht erneuerbar)	[MJ/m ² KOF]	1.304,61
	Punkte	80,46
GWP (Global Warming Potential)	[kg CO2/m² KOF]	99,88
	Punkte	74,94
AP (Versäuerung)	[kg SO2/m² KOF]	0,41
	Punkte	81,11
OI3-TGH OI3-TGH=(1/3.PEI + 1/3.GWP + 1/3.AP)	Punkte	78,84
OI3-Ic (Ökoindikator) OI3-Ic= 3 * OI3-TGH / (2+Ic)	Punkte	54,68
OI3-TGHBGF OI3-TGHBGF= OI3-TGH * KOF / BGF	Punkte	202,89
KOF	m²	2664,54
BGF	m²	1035,36
Ic	m	2,33

Eingang am 15. Nov. 2019 **ZEUS Nr. 19.90423.01**

Typ: Sanierungsplanung Einreichzweck: Baubehörde

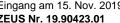
Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bauteil: 3.1a AW BESTAND-SAN 0,48m U=0,21

	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				, and the second	[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			\mathbf{Z}	\mathbf{Z}	1	Silikatputz armiert 2)	0,005	0,800	0,006
			Ø	\mathbf{Z}	2	Polystyrol (EPS f. Wärmedämmverbundsysteme WDVS)	0,140	0,040	3,500
A111111111			\mathbf{Y}	7	3	Kleber 2)	0,005	0,900	0,006
	36.31		\mathbf{Z}	\mathbf{Z}	4	Kalk-Zementputz	0,015	1,000	0,015
			\mathbf{Y}	\mathbf{Y}	5	Ziegel - Hochlochziegel porosiert <=800kg/m³ 2)	0,300	0,300	1,000
A1 1.11.4	\sim		\mathbf{Z}	\mathbf{Z}	6	Kalk-Zementputz	0,010	1,000	0,010
Million III					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
701 17.14									
ADDAMS.	363								
MAN I	36.317								
0,47	5 m								
`	1	,	*) R⊤ It	t. EN IS	SO 6946	= R _{si} + Summe R-Wert der Schichten + R _{se}	0,475		4,707 *)
			U-Wer	rt [W/m	12K]				0,21

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!


Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert	Berechneter U-Wert
0,35 W/m²K	0,21 W/m²K

Bauteil: 3.1b AW NEU OG1 0,46m U=0,20

√erwendung: Aul	senwana								
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				-	[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			✓	\mathbf{Z}	1	Silikatputz armiert 2)	0,005	0,800	0,006
			¥	Ø	2	Polystyrol (EPS f. Wärmedämmverbundsysteme WDVS)	0,140	0,040	3,500
			4	M	3	Ziegel - Hochlochziegel porosiert <=800kg/m³	0,300	0,250	1,200
			Y	Y	4	Kalk-Zementputz	0,010	1,000	0,010
	- 1				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
11111111									
DISTRICT CONTRACT									
101.00	341								
10.10									
Eddin't									
Mariana Paga									
	IV.								
/ 0,455 r	m \								
			*) RT	lt. EN I	SO 6946	S = Rsi + Summe R-Wert der Schichten + Rse	0,455		4,886 *)
•	•		Ú-We	rt [W/n	n²K]				0,20

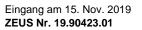
Geforderter U-Wert		Berechneter U-Wert	
0,35 W	//m²K	0,20	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bauteil: 3.2 AW OG2 0,42m U=0,22

	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				-	[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			✓	M	1	Außenputz 2)	0,005	0,540	0,009
			\mathbf{Z}		2	YTONG-Thermoblock® 40 cm PV 2/0,35 (natureplus)	0,400	0,090	4,444
			\mathbf{Y}	\mathbf{Z}	3	Kalk-Zementputz	0,010	1,000	0,010
	A' 1 1 1 1				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	144								
	, V . 7								
	U () 1								
10.70	1								
4.1.1									
	in proble								
0,415	m								
			*) RT	lt. EN I	SO 6946	S = Rsi + Summe R-Wert der Schichten + Rse	0,415		4,634 *)
			II-We	rt [W/m	n2K1	-			0.22


²⁾ Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert! ☑ wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert	Berechneter U-Wert
0,35 W/m²l	0,22 W/m²K

Bauteil: 3.3 AW Lift EG-OG2 0,37m U=0,27

Verwendung: Außer	wand								
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			₹	₩.	1	Silikatputz armiert 2)	0,005	0,800	0,006
			Ø	¥	2	Polystyrol (EPS f. Wärmedämmverbundsysteme WDVS)	0,100	0,040	2,500
			M	\mathbf{Z}	3	Ziegel - Hochlochziegel porosiert <=800kg/m³	0,250	0,250	1,000
			₹	₩.	4	Kalk-Zementputz	0,010	1,000	0,010
					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
NAME OF TAXABLE PARTY.									
ALL IN THE STATE OF THE STATE O									
/ 0,365 m	$ \downarrow $								
	′		*) RT	lt. EN I	SO 6946	S = Rsi + Summe R-Wert der Schichten + Rse	0,365		3,686 *)
•			U-We	rt [W/m	n²K]				0,27

Geforderter U-Wert	Berechneter U-Wert
0,35 W/m²K	0,27 W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bauteil: 3.4 AW - UG Lift 0.36m U=0.34

	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wer
Außen	(Skizze)	Innen				_	[m]	[W/mK]	[m2*K/W
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,04
			ď	₩.	1	EPS WLG 038 ²⁾	0,100	0,038	2,63
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ď	₩.	2	Kleber 2)	0,005	0,900	0,00
1.1.1	444.00		✓	₩.	3	Stahlbeton	0,250	2,500	0,10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,13
11 The Board	# 15 A 2 2 2 3								
11.1									
	1774								
The property of the second	100								
	312 1								
11,111,123,124,13									
	M. 高温度温度								
1.1/11									
The state of	The Artificial Control of the Contro								
100702000000000000000000000000000000000	RIN STATE								
0,355 m									
			*) RT	t. EN I	SO 6946	S = Rsi + Summe R-Wert der Schichten + Rse	0,355		2,907 *
				rt [W/m			,,,,,,,		0,34

M wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert! Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert	Berechneter U-Wert	
0,35 W/n	1 ² K 0,34	W/m²K

Bauteil: 3.4 EW 0,36m U=0,37

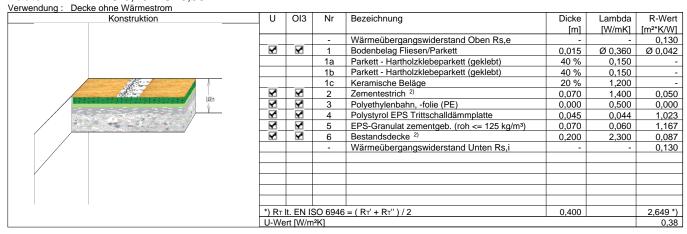
	danliegende Wand Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				Ĭ	[m]	[W/mK]	[m2*K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,000
			\mathbf{Y}	Y	1	Polystyrol XPS, CO2-geschäumt	0,100	0,041	2,439
2			\mathbf{Z}		2	Kleber 2)	0,005	0,900	0,006
1.1.114472	474		\mathbf{Z}	¥	3	Abdichtung ²⁾	0,005	0,230	0,022
			₹	\mathbf{Z}	4	Stahlbeton	0,250	2,500	0,100
111 73 178					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	tions is								
11, 11, 11, 12, 13, 13, 13									
And by the second									
	M. p. M. Sal								
1,1/1)									
111	(CA 37								
0.000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
0,360 m	\longrightarrow								
1	'		*) RT	lt. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,360		2,696 *)
			U-We	ert [W/m	12K]				0,37

Geforderter U-Wert		Berechneter U-Wert	
0,40	W/m²K	0,37	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Datum: 15. November 2019 Projekt: **MF_093-2019_Haas**

Bauteil: EB Lift 0,50m U=0,39


Steiermark

Verwendung: erdanliegender Fußboden				1					
Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert		
					[m]	[W/mK]	[m ² *K/W]		
			-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,170		
	\mathbf{Z}	\mathbf{Z}	1	Keramische Beläge	0,015	1,200	0,013		
	V	\mathbf{Z}	2	Zementestrich 2)	0,070	1,400	0,050		
	✓	✓	3	Polyethylenbahn, -folie (PE)	0,000	0,500	0,000		
			4	Polystyrol EPS Trittschalldämmplatte	0,045	0,044	1,023		
	Y	\mathbf{Z}	5	EPS-Granulat zementgeb. (roh <= 125 kg/m³)	0,070	0,060	1,167		
E 2 3 4 1 2 2 3 1 1 2 2 3 1 1 2 2 2 3 1 1 4 3 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6	Stahlbeton	0,300	2,500	0,120		
			-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,000		
	*) RT	lt. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,500		2,542 *)		
				U-Wert [W/m²K]					

M wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert! Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,40	W/m²K	0,39	W/m²K

Bauteil: 1.1 TD EG 0,40m U=0,38

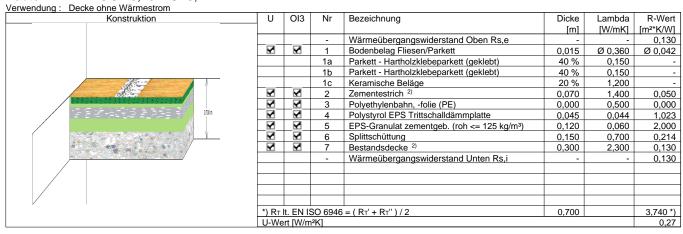
Geforderter U-Wert		Berechneter U-Wert	
0,90	W/m²K	0,38	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bauteil: 1.1a TD OG1 neu 0,50m U=0,37

Steiermark


Verwendung: Decke ohne Wärmestrom							
Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Oben Rs,e	-	-	0,130
	4	M	1	Bodenbelag Fliesen/Parkett	0,015	Ø 0,360	Ø 0,042
			1a	Parkett - Hartholzklebeparkett (geklebt)	40 %	0,150	-
			1b	Parkett - Hartholzklebeparkett (geklebt)	40 %	0,150	-
			1c	Keramische Beläge	20 %	1,200	-
	V	Y	2	Zementestrich 2)	0,070	1,400	0,050
(X)1	\mathbf{r}		3	Polyethylenbahn, -folie (PE)	0,000	0,500	0,000
	V	M	4	Polystyrol EPS Trittschalldämmplatte	0,045	0,044	1,023
	\mathbf{Y}		5	EPS-Granulat zementgeb. (roh <= 125 kg/m³)	0,070	0,060	1,167
	¥	Y	6	Bestandsdecke 2)	0,300	2,300	0,130
			-	Wärmeübergangswiderstand Unten Rs,i	-	-	0,130
	*) RT	lt. EN I	SO 6946	S = (RT' + RT") / 2	0,500		2,692 *)
U-Wert [W/m²K]							

wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OlB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

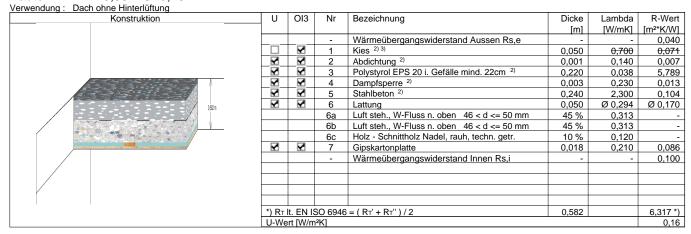
Geforderter U-Wert		Berechneter U-Wert	
0,90	W/m²K	0,37	W/m²K

Bauteil: 1.2 TD OG2 0,70m U=0,27

Geforderter U-Wert		Berechneter U-Wert	
0,90	W/m²K	0,27	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

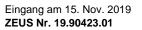
Datum: 15. November 2019 Projekt: **MF_093-2019_Haas**


Bauteil: TD STGH 0,27m U=2,58

Verwendung: Decke ohne Wärmestrom							
Konstruktion		OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
				_	[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Oben Rs,e	-	-	0,130
	~	Y	1	Keramische Beläge	0,015	1,200	0,013
			2	Zementestrich 2)	0,050	1,400	0,036
	~	Y	3	Stahlbeton	0,200	2,500	0,080
			-	Wärmeübergangswiderstand Unten Rs,i	-	-	0,130
	*) RT	It. EN I	SO 6946	S = Rsi + Summe R-Wert der Schichten + Rse	0,265		0,388 *)
U-Wert [W/m²K]							2,58

M wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert! Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
– W/r	n²K	2,58	W/m²K


Bauteil: 2.1 FD 0,58m U=0,16

- wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt wird in der U-Wert Berechnung / OI3 Berechnung nicht berücksichtigt
- 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert! 3) Diese Schicht wird nicht in die Berechnung des U-Wertes mit einbezogen.

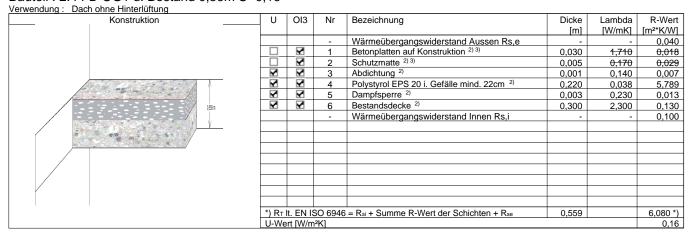
Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,20	W/m²K	0,16	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Datum: 15. November 2019 Projekt: MF_093-2019_Haas

Bauteil: 2.2 FD bei OG1 neu 0,47m U=0,17


Verwendung : Dach ohne Hinterlüftung	1			T=	T T		
Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	
			-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
		₩.	1	Kies ^{2) 3)}	0,050	0,700	0,071
	M	\mathbf{Z}	2	Abdichtung ²⁾	0,001	0,140	0,007
	\mathbf{x}	✓	3	Polystyrol EPS 20 i. Gefälle mind. 22cm ²⁾	0,220	0,038	5,789
	\mathbf{Z}		4	Dampfsperre 2)	0,003	0,230	0,013
	\mathbf{x}	\mathbf{Z}	5	Stahlbeton 2)	0,200	2,300	0,087
I I I I I I I I I I I I I I I I I I I			-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,100
	*) RT	lt. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,474		6,037 *)
U-Wert (Win2K)							0,17

- wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt
 wird in der U-Wert Berechnung / Ol3 Berechnung nicht berücksichtigt
- 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!
- 3) Diese Schicht wird nicht in die Berechnung des U-Wertes mit einbezogen.

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert	Berechneter U-Wert
0,20 W/m²K	0,17 W/m²K

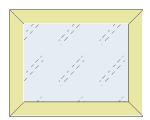
Bauteil: 2.4 FD OG1 ü. Bestand 0,56m U=0,16

- wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt wird in der U-Wert Berechnung / Ol3 Berechnung nicht berücksichtigt
- 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert! 3) Diese Schicht wird nicht in die Berechnung des U-Wertes mit einbezogen.

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,20	W/m²K	0,16	W/m²K

Eingang am 15. Nov. 2019 **ZEUS Nr. 19.90423.01**


Typ: Sanierungsplanung Einreichzweck: Baubehörde

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,00/0,80m U=1,03

Breite: 1.00 m Höhe: 0,80 m Glasumfang: 2,72 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	0		0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,040 W/(m·K) Glasumfang: 2,72 m

Zusammenfassung

Glasfläche: 0,45 m²

Rahmenfläche: 0,35 m²

Gesamtfläche: 0,80 m² Glasanteil: 57%

U-Wert: 1,03 W/m²K 0,49 g-Wert:

U-Wert bei 1,23m x 1,48m : 0,94 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Berechneter U-Wert Geforderter U-Wert **Berechneter U-Wert**

bei 1,23m x 1,48m 1,40 1,03 0,94 W/m²K W/m²K W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,10/2,20m U=0,92

Breite: 1,10 m Höhe: 2,20 m Glasumfang: 5,72 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	0		0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,040 W/(m·K) Glasumfang: 5,72 m

Zusammenfassung

Glasfläche: 1,74 m²

Rahmenfläche: 0,68 m²

Gesamtfläche: 2,42 m² Glasanteil: 72%

U-Wert: 0,92 W/m2K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert **Berechneter U-Wert Berechneter U-Wert**

bei 1,23m x 1,48m 1,40 0,92 0,94 W/m²K W/m²K W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,20/0,80m U=1,01

 Breite :
 1,20 m

 Höhe :
 0,80 m

 Glasumfang :
 3,12 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	0	·	0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ : 0,040 W/(m⋅K) Glasumfang : 3,12 m

Zusammenfassung

Glasfläche: 0,57 m²

Rahmenfläche: 0,39 m²

Gesamtfläche: 0,96 m² Glasanteil: 59%

U-Wert: 1,01 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,40 W/m²K 0,94 W/m²K 1,01 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,20/2,40m U=0,90

 Breite :
 1,20 m

 Höhe :
 2,40 m

 Glasumfang :
 6,32 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	0		0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ: 0,040 W/(m⋅K) Glasumfang : 6,32 m

Zusammenfassung

Glasfläche: 2,14 m²

Rahmenfläche: 0,74 m²

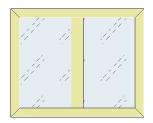
Gesamtfläche: 2,88 m² Glasanteil: 74%

U-Wert: 0,90 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert Berechneter U-Wert


		bei 1,23m x 1,4			
1,40	W/m²K	0,94	W/m²K	0,90	W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,60/1,30m U=0,99

 Breite :
 1,60 m

 Höhe :
 1,30 m

 Glasumfang :
 6,80 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	1	1,15	0,14	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ : 0,040 W/(m⋅K) Glasumfang : 6,80 m

Zusammenfassung

Glasfläche: 1,34 m²

Rahmenfläche: 0,74 m²

Gesamtfläche: 2,08 m² Glasanteil: 64%

U-Wert: 0,99 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

nutz - Ausgabe: - Marz 2015 ist erruiit.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,40 W/m²K 0,94 W/m²K 0,99 W/m²K

Eingang am 15. Nov. 2019 **ZEUS Nr. 19.90423.01**

Typ: Sanierungsplanung Einreichzweck: Baubehörde

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,60/2,20m U=0,88

 Breite :
 1,60 m

 Höhe :
 2,20 m

 Glasumfang :
 6,72 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	0		0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ : 0,040 W/(m⋅K) Glasumfang : 6,72 m

Zusammenfassung

Glasfläche: 2,73 m²

Rahmenfläche: 0,79 m²

Gesamtfläche: 3,52 m² Glasanteil: 78%

U-Wert: 0,88 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,40 W/m²K 0,94 W/m²K 0,88 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,80/1,30m U=0,97

 Breite :
 1,80 m

 Höhe :
 1,30 m

 Glasumfang :
 7,20 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	1	1,15	0,14	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

⊮ : 0,040 W/(m⋅K) Glasumfang : 7,20 m

Zusammenfassung

Glasfläche: 1,56 m²

Rahmenfläche: 0,79 m²

Gesamtfläche: 2,34 m² Glasanteil: 66%

U-Wert: 0,97 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

nutz - Ausgabe: - Marz 2015 ist erruiit.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,40 W/m²K 0,94 W/m²K 0,97 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,80/2,20m U=0,94

 Breite :
 1,80 m

 Höhe :
 2,20 m

 Glasumfang :
 10,80 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	1	1,15	0,14	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0	,	0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

v: 0,040 W/(m·K) Glasumfang : 10,80 m

Zusammenfassung

Glasfläche: 2,85 m²

Rahmenfläche: 1,11 m²

Gesamtfläche: 3,96 m² Glasanteil: 72%

U-Wert: 0,94 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

nutz - Ausgabe: - Marz 2015 ist erruiit.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,40 W/m²K 0,94 W/m²K 0,94 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 1,80/2,40m U=0,86

Breite: 1.80 m Höhe: 2,40 m 7,52 m Glasumfang:

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	0	·	0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0,00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,040 W/(m·K) Glasumfang: 7,52 m

Zusammenfassung

Glasfläche: 3,44 m²

Rahmenfläche: 0,88 m²

Gesamtfläche: 4,32 m² Glasanteil: 80%

U-Wert: 0,86 W/m2K 0,49 g-Wert:

0,94 W/m2K U-Wert bei 1,23m x 1,48m :

Geforderter U-Wert

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Berechneter U-Wert

		<u>bei 1,23m x 1,4</u>	<u>8m </u>		
1,40	W/m²K	0,94	W/m²K	0,86	W/m²K

Berechneter U-Wert

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Datum: 15. November 2019 Projekt: **MF_093-2019_Haas**

Außenfenster: AF 2,67/8,30m U=1,36 STGH Portal NNW

Breite: 2,67 m Höhe: 8,30 m Glasumfang: 53,46 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	MEALUXIT Wärmeschutzverglasung, 4/16/4 (Ar 90%)
Rahmen	1	1,65	0,10	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Vertikal-Sprossen	1	1,65	0,14	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Horizontal-Sprossen	4	1.65	0.14	SCHÜCO Corona CT 70 AS [Anschlagdichtung]

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,060 W/(m·K) 53,46 m Glasumfang:

Zusammenfassung

Glasfläche: 17,57 m²

Rahmenfläche: 4,59 m²

Gesamtfläche: Glasanteil: 22,16 m² 79%

U-Wert: 1,36 W/m²K 0,58 g-Wert:

U-Wert bei 1,23m x 1,48m : 1,40 W/m2K

Geforderter U-Wert

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Berechneter U-Wert

bei 1,23m x 1,48m

1,40 1,40 1,36 W/m²K W/m²K W/m²K

Berechneter U-Wert

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 2,67/9,04m U=1,35 STGH Portal ONO

 Breite :
 2,67 m

 Höhe :
 11,32 m

 Glasumfang :
 73,74 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	MEALUXIT Wärmeschutzverglasung, 4/16/4 (Ar 90%)
Rahmen	1	1,65	0,10	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Vertikal-Sprossen	1	1,65	0,14	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Horizontal-Sprossen	6	1.65	0.14	SCHÜCO Corona CT 70 AS [Anschlagdichtung]

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,060 W/(m·K) Glasumfang : 73,74 m

Zusammenfassung

Glasfläche: 23,95 m²

Rahmenfläche: 6,27 m²

Gesamtfläche: 30,22 m² Glasanteil: 79%

U-Wert: 1,36 W/m²K g-Wert: 0,58

U-Wert bei 1,23m x 1,48m : 1,40 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außenfenster: AF 2,70/2,40m U=0,88

 Breite :
 2,70 m

 Höhe :
 2,40 m

 Glasumfang :
 13,40 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	0,70	-	DreifachWärmeSchallsch G97 Ug=0,7 8/12/4/12/4 Ar
Rahmen	1	1,15	0,11	Gaulhofer Kunststofffensterrahmen Top Five GFK
Vertikal-Sprossen	1	1,15	0,14	Gaulhofer Kunststofffensterrahmen Top Five GFK
Horizontal-Sprossen	0		0.00	Gaulhofer Kunststofffensterrahmen Top Five GFK

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ: 0,040 W/(m⋅K) Glasumfang : 13,40 m

Zusammenfassung

Glasfläche: 5,10 m²

Rahmenfläche: 1,38 m²

Gesamtfläche: 6,48 m² Glasanteil: 79%

U-Wert: 0,88 W/m²K g-Wert: 0,49

U-Wert bei 1,23m x 1,48m : 0,94 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,40 W/m²K 0,94 W/m²K 0,88 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außentür: AT 1,00/2,00m U=1,42

 Breite :
 1,00 m

 Höhe :
 2,00 m

 Glasumfang :
 5,12 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	UNILUX WSG 1.1
Rahmen	1	1,65	0,11	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Vertikal-Sprossen	0		0,00	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Horizontal-Sprossen	0		0.00	SCHÜCO Corona CT 70 AS [Anschlagdichtung]

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ : 0,060 W/(m⋅K) Glasumfang : 5,12 m

Zusammenfassung

Glasfläche: 1,39 m²

Rahmenfläche: 0,61 m²

Gesamtfläche: 2,00 m² Glasanteil: 69%

U-Wert: 1,42 W/m²K g-Wert: 0,61

U-Wert bei 1,48m x 2,18m : 1,35 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

		bei 1,48m x 2,1			
1,40	W/m²K	1,35	W/m²K	1,42	W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außentür: AT 1,10/2,20m U=1,40

Breite: 1,10 m Höhe: 2,20 m Glasumfang: 5,72 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	UNILUX WSG 1.1
Rahmen	1	1,65	0,11	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Vertikal-Sprossen	0	·	0,00	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Horizontal-Sprossen	0		0,00	SCHÜCO Corona CT 70 AS [Anschlagdichtung]

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,060 W/(m·K) Glasumfang: 5,72 m

Zusammenfassung

Glasfläche: 1,74 m²

Rahmenfläche: 0,68 m²

Gesamtfläche: 2,42 m² Glasanteil: 72%

U-Wert: 1,40 W/m²K g-Wert: 0,61

U-Wert bei 1,48m x 2,18m : 1,35 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert **Berechneter U-Wert Berechneter U-Wert**

bei 1,48m x 2,18m 1,40 1,40 1,35 W/m²K W/m²K W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Außentür: AT 1,20/2,20m U=1,45

 Breite:
 1,20 m

 Höhe:
 2,20 m

 Glasumfang:
 7,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	UNILUX WSG 1.1
Rahmen	1	1,65	0,11	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Vertikal-Sprossen	0	·	0,00	SCHÜCO Corona CT 70 AS [Anschlagdichtung]
Horizontal-Sprossen	1	1,65	0,14	SCHÜCO Corona CT 70 AS [Anschlagdichtung]

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

ψ : 0,060 W/(m⋅K) Glasumfang : 7,60 m

Zusammenfassung

Glasfläche: 1,80 m²

Rahmenfläche: 0,84 m²

Gesamtfläche: 2,64 m² Glasanteil: 68%

U-Wert: 1,45 W/m²K g-Wert: 0,61

U-Wert bei 1,48m x 2,18m : 1,35 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: - März 2015 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

		bei 1,48m x 2,		 20:00:	
1,40	W/m²K	1,35	W/m²K	1,45	W/m²K

Baukörper-Dokumentation BK - Appartements NEU - ausgenommen Top4

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Baukörper: BK - Appartements NEU - ausgenommen Top4

Beheizte Hülle

Bezeichnung	Anz.	Länge	Breite		Bauteil	Ausrichtung	Zust	and	Brutto- Fläche	Netto- Fläche
Flachdach OG1	1	131,90 m	1,00 m	2.2 FD neu 0,47r	bei OG1	Horizontal		rm / ßen	131,90 m²	131,90 m ²
Flachdach OG1 bei	1	134,85	1,00 m		O OG1 ü.	Horizontal			134,85 m²	134,85 m²
Bestand		m		Besta	nd 0,56m		au	ßen		
AW neu Lift EG-OG2 -	1	4,87 m	10,53 m	3 3 Δ\Λ	U=0,16 / Lift EG-	71°	wa	rm /	51,28 m²	21,06 m ²
ONO	'	4,07 111	10,55 111	OG2 0,37r		/ 1	1	ßen	31,20111-	21,00111
		e/Zuschlä			Zeichnur	ng F	Parameter		Einzelfl.	Gesamtfl.
		67/9,04m L	J=1,35 ST	GH Portal				1	-30,22 m ²	-30,22 m ²
	ONO	[12]								00.003
AW neu Lift EG-OG2 -	1	er-Fläche 2,83 m	10,53 m	2 2 111	/ Lift EG-	251°		rm /	29,80 m ²	-30,22 m ² 27,80 m ²
WSW	'	2,03 111	10,55 111	OG2 0,37r		251		ßen	29,60 1112	27,00 1112
	Abzüg	e/Zuschlä	ge	0020,0	Zeichnur	ng F	Parameter		Einzelfl.	Gesamtfl.
		00/2,00m L	J=1,42					1	-2,00 m ²	-2,00 m ²
	Tür-Fl									-2,00 m ²
AW neu Lift EG-OG2 -	1	5,32 m	10,53 m	1	/ Lift EG-	341°		rm /	56,02 m ²	33,86 m²
NNW	Abzüc	∟ je/Zuschlä		OG2 0,37r	n U=0,27 ∣ Zeichnur	og E	au Parameter	ßen Anz.	Einzelfl.	Gesamtfl.
		87/8,30m L		GH Portal	Zeicilliui	ig F	arameter	1	-22.16 m ²	-22,16 m ²
	NNW	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7-1,00 01	Orri Ortai				•	22,10111	22,10
	Fenste	er-Fläche								-22,16 m ²
AW EG Bestand SAN -	1	11,44 m	3,57 m		3.1a AW	71°		rm /	40,84 m²	34,46 m ²
ONO				_	ND-SAN		au	ßen		
	A 1	Abzüge/Zuschläge 0,48m				-			F: 10	0 (11
		<u>je/Zuscnia</u> 10/2.20m L			Zeichnur	ng F	Parameter	Anz.	Einzelfl. -2.42 m²	Gesamtfl. -2.42 m ²
		30/2,20m L						1	-2,42 m² -3,96 m²	-2,42 m ²
		er-Fläche)=0,34						-3,90 111	-6,38 m ²
AW EG Bestand SAN -	1	15,41 m	3,57 m		3.1a AW	161°	wa	rm /	55,01 m ²	43,13 m ²
SSO		,	_ ,-		ND-SAN		au	ßen	, -	, -
				0,48r	n U=0,21					
		<u>je/Zuschlä</u>			Zeichnur	ng F	Parameter	Anz.	Einzelfl.	Gesamtfl.
		<u>30/2,20m L</u>	J=0,94					3	-3,96 m ²	-11,88 m²
ANV 50 D4		er-Fläche	0.57		0.4 - 0.04	0.440	T	/	40.40 3	-11,88 m²
AW EG Bestand SAN - NNW	1	12,93 m	3,57 m	BESTA	3.1a AW ND-SAN	341°		rm / ßen	46,16 m ²	39,56 m ²
ININV					n U=0,21		au	12611		
	Abzüc	e/Zuschlä	ae	0, 101	Zeichnur	na F	Parameter	Anz.	Einzelfl.	Gesamtfl.
		30/1,30m L						2		-4,68 m ²
	AF 1,2	20/0,80m L	J=1,01					2	-0,96 m ²	-1,92 m ²
		<u>er-Fläche</u>								-6,60 m ²
AW OG1 Bestand SAN -	1	11,44 m	3,83 m	5505.	3.1a AW	71°	1	rm /	43,82 m²	37,44 m²
ONO				_	ND-SAN		au	ßen		
	Abzüc	∟ ıe/Zuschlä	ne -	U,48ľ	n U=0,21 Zeichnur	na E	Parameter	Anz.	Einzelfl.	Gesamtfl.
		10/2,20m L			Loidinui	·9	urametel	1		-2,42 m ²
		30/2,20m L						1	-3,96 m ²	-3,96 m ²
		er-Fläche	-,			•				-6,38 m ²

Baukörper-Dokumentation BK - Appartements NEU - ausgenommen Top4

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bezeichnung	Anz.	Breite	Höhe		Bauteil	Ausrichtung	Zust	tand	Brutto- Fläche	Netto- Fläche
AW OG1 Bestand SAN - SSO	1	30,30 m	3,83 m	BESTA	3.1a AW ND-SAN n U=0.21	161°	warm / außen		116,05 m²	93,89 m²
	Ahzüd	ge/Zuschläd	ne	0,461	Zeichnun	n F	Parameter	Anz.	Finzelfl	Gesamtfl.
		80/2.20m L			2010111101	9 '	aramotor	3		-11,88 m ²
		10/2,20m L						1		-2.42 m²
		20/0,80m L						2		-1,92 m ²
		10/2,20m L						1		-2,42 m²
	AF 1,0	60/2,20m L	J=0,88					1	-3,52 m²	-3,52 m ²
	Fenst	er-Fläche	•						,	-19,74 m ²
	Tür-F	läche								-2,42 m ²
AW OG1 Bestand SAN - WSW	1	13,62 m	3,83 m	BESTA	3.1a AW ND-SAN n U=0,21	251°		rm / ßen	52,16 m ²	36,32 m²
	Abzüd	ge/Zuschläg	ne	01.0.	Zeichnun	a F	Parameter	Anz.	Finzelfl.	Gesamtfl.
		10/2,20m L				,		2	-4,84 m ²	
		60/2,20m L								-7,04 m ²
	AF 1,8	80/2,20m L	J=0,94							-3,96 m ²
	Fenst	er-Fläche	•						,	-15,84 m ²
AW OG1 Bestand SAN - NNW	1	24,98 m	3,83 m	BESTA	3.1a AW ND-SAN n U=0,21	341°			95,67 m²	79,63 m²
	Abzüd	ge/Zuschläg	ge		Zeichnun	g F	Parameter	Anz.	Einzelfl.	Gesamtfl.
		80/1,30m L				•				-11,70 m ²
	AF 1,2	20/0,80m L	J=1,01					2	-0,96 m ²	-1,92 m ²
	AF 1,	10/2,20m L	J=0,92					1	-2,42 m ²	-2,42 m ²
	Fenst	<u>er-Fläche</u>								-16,04 m ²
AW OG1 NEU - ONO	1	13,32 m	3,52 m	3.1b OG1 0,46n		71°	au	ßen	,	41,57 m²
		ge/Zuschlä			Zeichnun	ig F	<u>Parameter</u>			Gesamtfl.
		<u>00/0,80m L</u>								-0,80 m ²
		10/2,20m L	•							-2,42 m²
		<u>60/1,30m L</u>	J=0,99					1	-2,08 m ²	-2,08 m ²
		er-Fläche		· · ·			1			-5,30 m ²
AW OG1 NEU - SSO	1	11,19 m	3,52 m	3.1b . OG1 0,46n		161°	au	rm / ßen		35,23 m²
		ge/Zuschläg			Zeichnun	ig F	<u>Parameter</u>	Anz.	-2,42 m² -0,96 m² -2,42 m² -3,52 m² 52,16 m² 52,16 m² 52,16 m² -2,42 m² -3,52 m² 95,67 m² Einzelfl2,34 m² -0,96 m² -2,42 m² 46,87 m² Einzelfl0.80 m² -2,42 m² 46,87 m² Einzelfl0.80 m² -2,42 m² -2,08 m² -2,08 m² -2,08 m² 46,87 m² Einzelfl2,08 m² -2,08 m² 46,87 m² Einzelfl2,08 m² -2,08 m² -2,09 m² -2,08 m² -2,09 m² -2,08 m² -2,09 m²	Gesamtfl.
		<u>60/1,30m L</u> er-Fläche)=0,99		l					-4,16 m ² -4,16 m ²
AW OG1 NEU - WSW	1	13,32 m	3,52 m	3.1b / OG1 0,46n	AW NEU n U=0.20	251°		rm / ßen	46,87 m²	39,15 m ²
	Abzüc	ge/Zuschläg	ge		Zeichnun	g F	Parameter		Einzelfl.	Gesamtfl.
		60/1,30m L						1		-2,08 m ²
	AF 1,8	80/1,30m L	J=0,97					2		-4,68 m ²
	AF 1,2	20/0,80m L	J=1,01					1	-0,96 m ²	-0,96 m ²
		er-Fläche								-7,72 m²
AW OG1 NEU - NNW	1	11,19 m	3,52 m	3.1b . OG1 0,46n		341°	au	rm / ßen		36,97 m²
	Abzüg	ge/Zuschlä	ge		Zeichnun	g F	Parameter			Gesamtfl.
		10/2,20m L	J=1,40					1	-2,42 m ²	-2,42 m ²
	Tür-F			1						-2,42 m ²
AW OG2 NEU - ONO	1	11,44 m	3,53 m		AW OG2 n U=0,22	71°	au	rm / ßen	,	27,42 m²
		ge/Zuschlä			Zeichnun	g F	Parameter Parame	Anz.		Gesamtfl.
		70/2,40m L	J=0,88					2	-6,48 m²	-12,96 m ²
	Fenst	<u>er-Fläche</u>							-3,96 m² -2,42 m² -0,96 m² -2,42 m² -3,52 m² 52,16 m² 52,16 m² 52,16 m² -2,42 m² -3,52 m² 95,67 m² Einzelfl2,34 m² -0,96 m² -2,42 m² -46,87 m² Einzelfl0,80 m² -2,42 m² -2,08 m² -2,42 m² -2,08 m² -2,42 m² -2,08 m² -2,34 m² -2,08 m² -2,42 m² -2,08 m² -2,34 m² -2,08 m² -2,34 m² -2,08 m² -2,34 m² -2	-12,96 m ²

Steiermark Eingang am 15. Nov. 2019 **ZEUS Nr. 19.90423.01**


Typ: Sanierungsplanung Einreichzweck: Baubehörde

Baukörper-Dokumentation BK - Appartements NEU - ausgenommen Top4

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bezeichnung	Anz.	Breite	Höhe		Bauteil	/	Ausrichtung	Zust	tand	Brutto-	Netto-
AW COO NELL COO	4	40.45	0.50	0.0	4144 000		4040		,		Fläche
AW OG2 NEU - SSO	1	19,45 m	3,53 m		AW OG2 n U=0,22		161°		ırm / ıßen	68,66 m²	48,50 m ²
	Abzüg	ge/Zuschläg	ge		Zeichnu	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	AF 1,8					1	-4,32 m ²	-4,32 m ²			
	AF 2,	70/2,40m L	J=0,88						2	-6,48 m ²	-12,96 m ²
	AF 1,2	20/2,40m L	J=0,90						1	-2,88 m ²	-2,88 m ²
	Fenst	<u>er-Fläche</u>								Fläche 68,66 m² Einzelfl. -4,32 m² -6,48 m²	-20,16 m ²
AW OG2 NEU - WSW	1	13,62 m	3,53 m		AW OG2 n U=0,22		251°		ırm / ıßen	48,08 m²	30,80 m²
	Abzüg	ge/Zuschläg	ge		Zeichnu	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	AF 2,	70/2,40m L	J=0,88						2	-6,48 m ²	-12,96 m ²
	AF 1,8	80/2,40m L	J=0,86						1	-4,32 m ²	-4,32 m ²
	Fenst	er-Fläche								,	-17,28 m ²
AW OG2 NEU - NNW	1	14,13 m	3,53 m		AW OG2 n U=0,22		341°		ırm / ıßen	49,88 m²	47,96 m ²
	Abzüc	ge/Zuschläg	ne	0, 121	Zeichnu	na	Р	arameter		Finzelfl	Gesamtfl.
		20/0,80m L				9		a.a	2		-1,92 m ²
		er-Fläche	,				L		_	0,00 111	-1,92 m ²
Flachdach OG2	1	263,96 m	1,00 m	2.1 F	D 0,58m U=0,16		Horizontal		ırm / ıßen	263,96 m²	263,96 m ²
erdanliegender Boden	1	25,91 m	1,00 m	EB L	ift 0,50m	E	rdanliegend		ırm /	25,91 m²	25,91 m²
STGH			,		U=0,39		1,5m unter Erdreich	au	ıßen	,,,	- , -
AW neu Lift - UG - ONO	1	4,87 m	6,51 m		- UG Lift n U=0,34		71°		ırm / ıßen	22,81 m²	20,17 m ²
	Abzüg	ge/Zuschläg	ge		Zeichnu	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	EW					b	a = b =	2,60 m 1,00 m	1	-2,60 m ²	-2,60 m²
	EW					b	a = b =	6,29 m 1,00 m	1	-6,29 m²	-6,29 m²
	ΔT 1.3	20/2,20m U	I_1 //5						1	-2 64 m²	-2,64 m²
	Zusch						2,04 111	-8,89 m ²			
	Tür-Fl							-2,64 m ²			
EW < 1,50m	1	7,10 m	1,50 m	3.4 E\	N 0,36m U=0,37		danliegend <= 1,5m er Erdreich		rm / ßen	21,23 m²	21,23 m ²
	Abzüc	e/Zuschläg	ne		Zeichnur	าต	_	arameter	Anz.	Finzelfl	Gesamtfl.
	NNW	o Lacorna	<u>, </u>		Loioiiiidi	·9	a =	5,32 m	1		7,98 m ²
						Ь	b =	1,50 m		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	ONO		b	a = b =	2,60 m 1,00 m	1	2,60 m²	2,60 m²			
	Zusch	lags/Abzug	gs Wand-F	läche							10,58 m²

Baukörper-Dokumentation BK - Appartements NEU - ausgenommen Top4

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bezeichnung	Anz.	Breite	Höhe		Bauteil	Ausrichtung	Zus	tand	Brutto- Fläche	Netto- Fläche
EW > 1,50m	1	7,10 m	5,01 m	3.4 E	W 0,36m U=0,37	Erdanliegend > 1,5m unter Erdreich	warm / außen		82,66 m²	82,66 m²
	Abzüg	ge/Zuschlä	ge		Zeichnui	ng P	arameter	Anz.	Einzelfl.	Gesamtfl.
	NNW					a = b =	5,32 m 3,99 m		21,23 m²	21,23 m²
	Liftsch	nacht				a = b =	2,00 m 0,88 m	2	1,76 m²	3,52 m²
	Liftsch	nacht			<u> </u>	a = b =	2,05 m 0,88 m	2	1,80 m²	3,61 m²
	ONO					a = b =	6,29 m 1,00 m	1	6,29 m²	6,29 m²
	SSO				<u> </u>	a = b =	5,32 m 2,34 m	1	12,45 m²	12,45 m²
	Zusch	lags/Abzud	as Wand-F	läche		•		· ·		47,09 m ²
AW Neu Lift-UG - NNW	1	5,32 m	1,02 m	3.4 AW	- UG Lift n U=0,34	341°		rm / ßen	5,43 m²	5,43 m²

Baukörper-Dokumentation BK - Appartements NEU - ausgenommen Top4

MF_093-2019_Haas Projekt: Datum: 15. November 2019

Baukörper: BK - Appartements NEU - ausgenommen Top4

Beheiztes Volumen

Bezeichnung	Тур	Zeichnung		Parameter	Anzahl	Abzug	Zuschlag
EG	Fläche x Höhe	A	A = h =	188,87 m² 3,57 m	1	Š	Zuschlag 674,27 m³
OG1	Fläche x Höhe	A	A = h =	372,90 m² 3,83 m	1		1.428,21 m³
OG1 NEU	Fläche x Höhe	A	A = h =	131,90 m² 3,52 m	1		464,29 m³
OG2	Fläche x Höhe	A	A = h =	238,05 m² 3,53 m	1		840,32 m³
STGH EG bis OG2	Kubus	b	a = b = c =	4,87 m 5,32 m 10,53 m	1		272,82 m³
STGH UG	Fläche x Höhe	A	A = h =	25,91 m² 6,51 m	1		168,67 m³
Summe							3.848,57 m ³

Beheizte Brutto-Geschoßfläche

Bezeichnung	Anz.	Länge	Breite		Bauteil	Ausrichtung	Zust	and	Brutto-	Netto-
									Fläche	Fläche
Decke zu beheizten	1	11,44 m	16,51 m	1.1 TD E	G 0,40m	-	wa	rm /	188,87 m²	188,87 m²
Verkaufsraum - EG					U=0,38		w	arm		
	Abzüge/Zuschläge				Zeichnung	g P	arameter	Anz.	Einzelfl.	Gesamtfl.
	Recht	eck	_			a =	0,00 m	1	0,00 m ²	0,00 m ²
					а	b =	0,00 m			

Baukörper-Dokumentation BK - Appartements NEU - ausgenommen Top4

Projekt: MF_093-2019_Haas Datum: 15. November 2019

Bezeichnung	Anz.	Länge	Breite		Bauteil	Ausrichtung	Zus	tand	Brutto- Fläche	Netto- Fläche
STGH - EG	1	4,87 m	5,32 m	TD STG	GH 0,27m U=2,58	-		arm / varm	25,91 m²	25,91 m²
Trenndecke - OG1 zu beh. App./Gasth.	1	11,44 m		1.1 TD E	G 0,40m U=0,38	-	v	arm / /arm	372,90 m²	372,90 m²
	Abzüg	ge/Zuschlä	ge		Zeichnu	ng I	Parameter	Anz.		
	Recht	teck				a = b =	2,18 m 12,05 m	1	26,27 m ²	26,27 m ²
	Zusch	lags/Abzug	ns Wand-F	läche						26,27 m ²
STGH OG1	1	4,87 m	5,32 m	TD STG	H 0,27m U=2,58	-	1	rm / arm	25,91 m²	25,91 m ²
Trenndecke - OG1 NEU	1	13,32 m	11,19 m	1.1a TD (0,50n		-	wa	rm / arm	131,90 m²	131,90 m²
		ge/Zuschläg	ge		Zeichnur	ng F	Parameter	Anz.	Einzelfl.	Gesamtfl.
	Recht	eck				a = b =	1,70 m 5,05 m	1	-8,59 m²	-8,59 m²
	Recht	eck				a = b =	1,69 m 5,05 m	1	-8,51 m²	-8,51 m²
	Zusch	lags/Abzug	rs Wand-F	läche						-17,09 m ²
Trenndecke - OG2 NEU	1	11,44 m	19,45 m	1.2 TD OG	U=0,27	-	1	rm / arm	238,05 m ²	238,05 m ²
		ge/Zuschläg	ge		Zeichnur	ng F	Parameter	Anz.	131,90 m ² z. Einzelfl. 1 -8,59 m ² 1 -8,51 m ² 238,05 m ² z. Einzelfl.	Gesamtfl.
	Recht	eck				a = b =	7,13 m 2,18 m	1	15,54 m²	15,54 m²
	Zusch	lags/Abzug	as Wand-F	läche				1	L	15,54 m²
STGH OG2	1	4,87 m	5,32 m	TD STG	H 0,27m U=2,58	-	w	rm / arm	25,91 m²	25,91 m ²
erdanliegender Boden STGH	1	25,91 m	1,00 m	EB L	ift 0,50m U=0,39	Erdanliegend > 1,5m unter Erdreich	au	rm / ßen	25,91 m²	25,91 m²
Summe										1.035,36 m ²
Reduktion										0,00 m ²
BGF										1.035,36 m ²