Energieausweis für Wohngebäude

OIB ÖSTERREJCHISCHES

OIB-Richtlinie 6

BEZEICHNUNG	1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS		
Gebäude(-teil)	Wohnen	Baujahr	
Nutzungsprofil	Mehrfamilienhäuser	Letzte Veränderung	
Straße	Heiligenstädterstraße 93	Katastralgemeinde	Heiligenstadt
PLZ/Ort	1190 Wien-Döbling	KG-Nr.	01503
Grundstücksnr.	324/4, 324/5	Seehöhe	165 m

SPEZIFISCHER HEIZWÄRMEBEDARF, PRIMÄRENERGIEBEDARF, KOHLENDIOXIDEMISSIONEN UND						
	HWB SK	PEB SK	CO2 SK	f GEE		
A ++						
A +						
A				A		
В	В	В	В	A		
С						
D						
Е						
F						
G						

HWB: Der Heizwärmebedarf beschreibt jene Wärmemenge, welche den Räumen rechnerisch zur Beheizung zugeführt werden muss.

WWWB: Der Warmwasserwärmebedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht ca. einem Liter Wasser je Quadratmeter Brutto-Grundfläche, welcher um ca. 30 °C (also beispielsweise von 8 °C auf 38 °C) erwärmt wird.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Nutzenergiebedarf die Verluste der Haustechnik im Gebäude berücksichtigt. Dazu zählen beispielsweise die Verluste des Heizkessels, der Energiebedarf von Umwälzpumpen etc.

HHSB: Der Haushaltsstrombedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht ca. dem durchschnittlichen flächenbezogenen Stromverbrauch in einem durchschnittlichen österreichischen Haushalt.

EEB: Beim Endenergiebedarf wird zusätzlich zum Heizenergiebedarf der Haushaltsstrombedarf berücksichtigt. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss.

PEB: Der Primärenergiebedarf schließt die gesamte Energie für den Bedarf im Gebäude einschließlich aller Vorketten mit ein. Dieser weist einen erneuerbaren und einen nicht erneuerbaren Anteil auf. Der Ermittlungszeitraum für die Konversionsfaktoren ist 2004–2008.

CO 2: Gesamte dem Endenergiebedarf zuzurechnenden Kohlendioxidemissionen, einschließlich jener für Transport und Erzeugung sowie aller Verluste. Zu deren Berechnung wurden übliche Allokationsregeln unterstellt.

fGEE: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über

Energieausweis für Wohngebäude

OIB-Richtlinie 6

GEBÄUDEKENNDATEN					
Brutto-Grundfläche	1.627,80 m2	Klimaregion	N	mittlerer U-Wert	0,385 W/m2K
Bezugs-Grundfläche	1.302,24 m2	Heiztage	215 d	Bauweise	schwere
Brutto-Volumen	4.783,94 m3	Heizgradtage	3454 Kd	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	1.473,58 m2	Norm-Außentemperatur	-12,2 °C	Sommertauglichkeit	nachgewiesen
Kompaktheit (A/V)	0,31 1/m	Soll-Innentemperatur	20 °C	LEK T-Wert	22
charakteristische Länge	3,25 m				

WÄRME- UNI	DENERGIEBEDARF	Wohnen			
	Referenzklima	Standortklima		Anforderung	
			spezifisch		
HWB	28,25 kWh/m2a	46.945 kWh/a	28,84 kWh/m2a	30,78 kWh/m2a	erfüllt
WWWB		20.795 kWh/a	12,78 kWh/m2a		
HTEB RH		8.361 kWh/a	5,14 kWh/m2a		
HTEB WW		18.616 kWh/a	11,44 kWh/m2a		
HTEB		40.127 kWh/a	24,65 kWh/m2a		
HEB		96.785 kWh/a	59,46 kWh/m2a		
HHSB		26.737 kWh/a	16,43 kWh/m2a		
EEB		123.522 kWh/a	75,88 kWh/m2a	88,60 kWh/m2a	erfüllt
PEB		185.677 kWh/a	114,10 kWh/m2a		
PEB n.ern.		172.249 kWh/a	105,80 kWh/m2a		
PEB ern.		13.429 kWh/a	8,20 kWh/m2a		
CO 2		34.268 kg/a	21,10 kg/m2a		
f GEE	0,84 -		0,85 -		

ERSTELLT			
GWR-Zahl	keine	ErstellerIn	CAD Office Müllner GmbH
Ausstellungsdatum	15.12.2014	Unterschrift	
Gültigkeitsdatum	14.12.2024		

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

Heiligenstädterstraße 93 A 1190, Wien-Döbling

Verfasser

CAD Office Müllner GmbH Wienerstraße 30/4 2320 Schwechat CAD Office Müllner GmbH **T** 01/7072789 **F** 01/7072789-11

E muellner@cadoffice.at

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

Heiligenstädterstraße 93 1190 Wien-Döbling

Katastralgemeinde: 01503 Heiligenstadt

Einlagezahl: 1010

Grundstücksnummer: 324/4, 324/5

GWR Nummer: keine

Planunterlagen

Datum: 12.12.2014 Nummer: hei-03/1,2

Verfasser der Unterlagen

 CAD Office Müllner GmbH
 T 01/7072789

 Wienerstraße 30/4
 F 01/7072789-11

2320, Schwechat M

CAD Office Müllner GmbH E muellner@cadoffice.at

ErstellerIn Nummer: (keine)

Planer

T
Hammer oder Tschabuschnig Architektur
F
Stollgasse 5/12
M
1070 Wien-Neubau
E

Auftraggeber

T Point of Living GmbH F M

Angewandte Berechnungsverfahren

Bauteile EN ISO 6946:2003-10 Fenster EN ISO 10077-1:2006-12

Unkonditionierte Gebäudeteile vereinfacht, ON B 8110-6:2010-01-01
Erdberührte Gebäudeteile vereinfacht, ON B 8110-6:2010-01-01

Wärmebrücken pauschal, ON B 8110-6:2010-01, Formel (12)

Verschattungsfaktoren vereinfacht, ON B 8110-6:2010-01

 Heiztechnik
 ON H 5056:2011-03

 Raumlufttechnik
 ON H 5057:2011-03

 Beleuchtung
 ON H 5059:2010-01

 Kühltechnik
 ON H 5058:2011-03

Diese Lokalisierung entspricht der OIB Richtlinie 6:2011, es werden die Berechnungsnormen Stand 201

Flächen der thermischen Gebäudehülle		1.473,5	
Opake Flächen	84,78 %	1.249,28	
Fensterflächen	15,22 %	224,30	
Wärmefluss nach oben		311,40	
Wärmefluss nach unten		286,54	
Andere Flächen		8,31	
Opake Flächen	100 %	8,31	
Fensterflächen	0 %	0,00	

Flächen der thermischen Gebäudehülle

Wohnen				Mehrfamilienhäuser
				m2
AF01	Fenster/Fenstertür 430/130 w	W	1 x 5,59	5,59
				m2
AF02	Fenster/Fenstertür 289/230 w	W	1 x 6,65	6,65
4.500				m2
AF03	Fenster/Fenstertür 384/230 w	W	1 x 8,83	8,83
				m2
AF04	Fenster/Fenstertür 224/148 w	W	8 x 3,32	26,56
				m2
AF05	Fenster/Fenstertür 102/236 w	W	7 x 2,41	16,87
				m2
AF06	Fenster/Fenstertür 148/236 w	W	6 x 3,49	20,94
				m2
AF07	Fenster/Fenstertür 256/236 w	W	3 x 6,04	18,12
4.500				m2
AF08	Fenster/Fenstertür 92/106 w	W	1 x 0,98	0,98
				m2
AF09	Fenster/Fenstertür 182/218 w	W	1 x 3,97	3,97
				m2
AF10	Fenster/Fenstertür 102/218 w	W	1 x 2,22	2,22

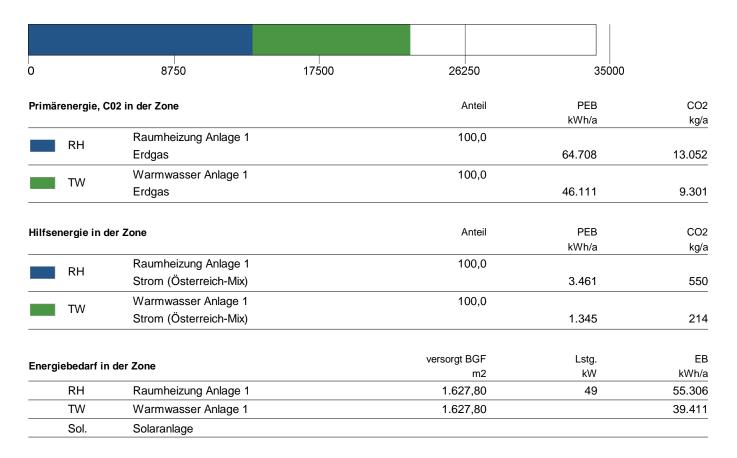
				2
AF11	DFF 94/160 w	W, 45	4 x 1,50	m2 6,00
				m2
AF12	DFF 114/160 w	W, 45	2 x 1,82	3,64
				m2
AF13	Fenster/Fenstertür 290/138 w	W	1 x 4,00	4,00
				m2
AF14	Fenster/Fenstertür 102/216 w	W	1 x 2,20	2,20
				_
AF15	Fenster/Fenstertür 436/216 w	W	1 x 9,42	m2 9,42
A1 10	- Totaletti 430/210 W		1 7 0,42	3,42
A F.4.C			00 0.74	m2
AF16	Fenster/Fenstertür 110/246 o	0	23 x 2,71	62,33
				m2
AF17	DFF 114/160 o	O, 45	9 x 1,82	16,38
				m2
AF18	DFF 66/140 o	O, 45	1 x 0,92	0,92
				m2
AF19	DFF 94/160 o	O, 45	1 x 1,50	1,50
AF20	Fenster/Fenstertür 110/226 o	0	2 x 2,49	m2 4,98
AF21	Fenster/Fenstertür 102/216 s	S	1 x 2,20	m2 2,20
	101010177 0110101141 102/2100		. x =,=v	
AT04	5 '		0 4.00	m2
AT01	Eingangstür 90/220	N	2 x 1,98	3,96
				m2
AW03	Feuermauer freistehend		4 0.05*0.00	175,92
	Fläche	N X+		3,76
	Fläche Fläche	N X+		44,55 29,00
	Fläche	N X+		29,00 54,10
	Fläche	S X+		44,50
AW04	Außenwand			m2 422,09
	Fläche	N X+	y 1 x 0,6*11,28	6,76
	Fläche	N X+	y 1 x 1,28+1,28+1,28	3,84
۸ ۳۵b:DL IV	SIK 12.0.26			15 12 2014

	Fläche	N	x+y	1 x 3,92+3,92	7,84
	Fläche	0	x+y	1 x 17,395*11,28	196,21
	Fläche	0	x+y	1 x 17,395*1,2	20,87
	Fläche	0	x+y	1 x 5,9*1,64	9,67
	Fläche	0	x+y	1 x 5,69*2,84	16,15
	Fläche	s	x+y	1 x 0,6*11,28	6,76
	Fläche	S	x+y	1 x 1,28+1,28+1,28	3,84
	Fläche	S	x+y	1 x 2,9*2,84	8,23
	Fläche	S	x+y	1 x 3,92	3,92
	Fläche	W	x+y	1 x 15,67*3,96	62,05
	Fläche	W	x+y	1 x 17,635*11,28	198,92
	Fläche	W	x+y	1 x 17,635*1,20	21,16
	Fläche	W	x+y	1 x 4,6*1,64	7,54
	Fläche	W	x+y	1 x 15,54*2,84	44,13
	Fenster/Fenstertür 430/130 w			- 1 x 5,59	- 5,59
	Fenster/Fenstert ür 289/230 w			- 1 x 6,65	- 6,65
	Fenster/Fenstertür 384/230 w			- 1 x 8,83	- 8,83
	Fenster/Fenstertür 224/148 w			- 8 x 3,32	- 26,56
	Fenster/Fenstertür 102/236 w			- 7 x 2,41	- 16,87
	Fenster/Fenstertür 148/236 w			- 6 x 3,49	- 20,94
	Fenster/Fenstertür 256/236 w			- 3 x 6,04	- 18,12
	Fenster/Fenstert ür 92/106 w			- 1 x 0,98	- 0,98
	Fenster/Fenstertür 182/218 w			-1 x 3,97	- 3,97
	Fenster/Fenstertür 102/218 w			- 1 x 2,22	- 2,22
	Fenster/Fenstertür 290/138 w			- 1 x 4,00	- 4,00
	Fenster/Fenstertür 102/216 w			- 1 x 2,20	- 2,20
	Fenster/Fenstertür 436/216 w			- 1 x 9,42	- 9,42
	Fenster/Fenstert ür 110/246 o			- 23 x 2,71	- 62,33
	Fenster/Fenstertür 110/226 o			- 2 x 2,49	- 4,98
	Fenster/Fenstertür 102/216 s			- 1 x 2,20	- 2,20
414/05					m2
AW05	Außenwand - Rampenabfahrt zu Wohnung				15,12
	Fläche	0	x+y	1 x 2,0*3,6	7,20
	Fläche	S	x+y	1 x 2,0*3,96	7,92
					m2
AW06	Außenwand Liftschacht				12,00
	Fläche	N	х+у	1 x 3,5*1,0	3,50
	Fläche	0	x+y	1 x 2,5*1,0	2,50
	Fläche	S	x+y	1 x 3,5*1,0	3,50
	Fläche	W	x+y	1 x 2,5*1,0	2,50
DOE	Dechtermone				m2
D05	Dachterrasse				48,10
	Fläche	Н	x+y	1 x 7,0	7,00
	Fläche	Н	x+y	1 x 31,80	31,80
	Fläche	Н	х+у	1 x 9,30	9,30
					m2
D06	Flachdach (Vakuumd. System Bauder)				124,40
	Fläche	Н	х+у	1 x 124,40	124,40

	Liftschacht Warmdach				0.0	8,00
	Fläche	Н	х+у	1	x 8,0	8,00
	Steildach-Blechdach					m2 92,36
	Fläche	O, 45°	х+у	1	x 6,5*11,71	76,11
	Fläche	W, 45°	x+y		x 6,4*2,1	13,44
	Fläche	W, 45°	x+y		x 2,6*9,72	25,27
	Fläche	W, 45°	x+y		x 0,5*11,95	5,97
	DFF 94/160 w		,		x 1,50	- 6,00
	DFF 114/160 w			- 2	x 1,82	- 3,64
	DFF 114/160 o			- 9	x 1,82	- 16,38
	DFF 66/140 o			- 1	x 0,92	- 0,92
	DFF 94/160 o			- 1	x 1,50	- 1,50
						m2
	Flachdach Gaupen					10,10
	Fläche	Н	х+у	1	x 6,0+4,1	10,10
						m2
6	EG Stufenrampe ü. Rampeneinfahrt					30,80
	Fläche	Н	х+у	1	x 30,8	30,80
7	EG Wohnungsdecke ü. UG					m2 118,00
	Fläche	Н	х+у	1	x 63,05	63,05
	Fläche	н	x+y		x 54,95	54,95
	T Idono		λιγ	•	X 0 1,50	01,00
а	1.OG-2.DG Wohnungstrenndecke ü. Stiege	I				m2 85,85
а	1.0G-2.DG Wohnungstrenndecke ü. Stiege Fläche	Н	х+у	1	x 85,85	85,85
	Fläche		х+у	1	x 85,85	85,85 85,85 m 2
a b			х+у	1	x 85,85	85,85 85,85 m 2
	Fläche		x+y x+y		x 85,85 x 7,0	85,85 85,85 m2 36,79
	Fläche Wohnungstrenndecke ü. Außenluft	Н		1		85,85 85,85 m2 36,79 7,00
	Wohnungstrenndecke ü. Außenluft Fläche	н	x+y	1 1	x 7,0	
b	Wohnungstrenndecke ü. Außenluft Fläche Fläche Fläche	H H	x+y x+y	1 1	x 7,0 x 2,79	85,85 85,85 m2 36,79 7,00 2,79 27,00
	Wohnungstrenndecke ü. Außenluft Fläche Fläche Fläche Wohnungstrenndecke ü. Müllraum	Н Н Н	x+y x+y	1 1 1	x 7,0 x 2,79 x 27,0	85,85 85,85 m2 36,79 7,00 2,79 27,00 m2 15,10
b	Wohnungstrenndecke ü. Außenluft Fläche Fläche Fläche	H H	x+y x+y	1 1 1	x 7,0 x 2,79	85,85 85,85 m2 36,79 7,00 2,79 27,00 m2 15,10
b	Wohnungstrenndecke ü. Außenluft Fläche Fläche Fläche Wohnungstrenndecke ü. Müllraum Fläche	Н Н Н	x+y x+y x+y	1 1 1	x 7,0 x 2,79 x 27,0	85,85 85,85 m2 36,79 7,00 2,79 27,00 m2 15,10 15,10
b	Wohnungstrenndecke ü. Außenluft Fläche Fläche Fläche Wohnungstrenndecke ü. Müllraum Fläche Wohnungstrennwand Wohnung/Wohnung,	H H H	x+y x+y x+y	1 1 1	x 7,0 x 2,79 x 27,0 x 15,10	85,85 85,85 m2 36,79 7,00 2,79 27,00 m2 15,10 15,10 m2 42,77
b	Wohnungstrenndecke ü. Außenluft Fläche Fläche Fläche Wohnungstrenndecke ü. Müllraum Fläche	Н Н Н	x+y x+y x+y	1 1 1	x 7,0 x 2,79 x 27,0	85,85 85,85 m2 36,79 7,00 2,79 27,00 m2 15,10 15,10

					m2
IW09	Wohnungstrennwand Wohnung/Müllraum				7,92
	Fläche	N	х+у	1 x 2,0*3,96	7,92

Andere Flächen


Wohnen					Mehrfamilienhäuser
					m2
IW04	Wohnungstrennwand Aufzug./Whng.				8,32
	Fläche	N	х+у	1 x 2,1*3,96	8,31

Anlagentechnik des Gesamtgebäudes

1190, Heiligenst ädterstraße 93 NEUBAU WOHNHAUS

Wohnen

Nutzprofil: Mehrfamilienhäuser

Raumheizung Anlage 1

Bereitstellung: RH-Wärmebereitstellung zentral, Defaultwert für Leistung (49 kW), Kessel mit Gebläseunterstützung, gasförmige Brennstoffe, Brennwertgerät, Wirkungsgrad eigene Angabe, Baujahr nach 2004, (eta 100 %: 0,89), (eta 30 %: 0,95), Aufstellungsort nicht konditioniert, modulierend, gleitende Betriebsweise

Speicherung: Lastausgleichsspeicher (Heizkessel) (1994 -), Anschlussteile gedämmt, mit E-Patrone, Aufstellungsort nicht konditioniert, Nenninhalt, Defaultwert (Nenninhalt: 1.225 l)

Verteilleitungen: Längen pauschal, nicht konditioniert, 3/3 gedämmt, Armaturen gedämmt

Steigleitungen: Längen pauschal, nicht konditioniert, 3/3 gedämmt, Armaturen gedämmt

Anbindeleitungen: Längen pauschal, 2/3 gedämmt, Armaturen gedämmt

Abgabe: Raumthermostat-Zonenregelung mit Zeitsteuerung, individuelle

Wärmeverbrauchsermittlung, Flächenheizung (40 °C / 30 °C)

	Verteilleitungen	Steigleitungen	Anbindeleitungen
Wohnen	0,00 m	0,00 m	455,78 m
unkonditioniert	70,00 m	130,22 m	

Warmwasser Anlage 1

Bereitstellung: WW- und RH-Wärmebereitstellung kombiniert, Raumheizung Anlage 1

Speicherung: indirekt beheizter Warmwasserspeicher, Solaranlage (1994 -), Anschlussteile gedämmt, ohne E-Patrone, Aufstellungsort nicht konditioniert, Nenninhalt, eigene Angabe (Nenninhalt: 1.500 l)

Verteilleitungen: Längen pauschal, nicht konditioniert, 3/3 gedämmt, Armaturen gedämmt

Steigleitungen: Längen pauschal, nicht konditioniert, 3/3 gedämmt, Armaturen gedämmt

Zirkulationsleitung: mit Zirkulation, Längen und Lage wie Verteil- und Steigleitung

Stichleitung: Längen pauschal, Kunststoff (Stichl.)

Abgabe: Zweigriffarmaturen, individuelle Wärmeverbrauchsermittlung

	Verteilleitungen	Steigleitungen	Stichleitungen
Wohnen	0,00 m	0,00 m	260,44 m
unkonditioniert	23,92 m	65,11 m	
	Zirkulationsverteilleitungen	Zirkulationssteigleitungen	
Wohnen	0,00 m	0,00 m	
unkonditioniert	22,92 m	65,11 m	

Solaranlage

Kollektor: ausschließlich für Warmwasserwärmebedarf, Aperturfläche: 24 m2, Warmwasser Anlage 1, Hochselektiv (z.B. Schwarzchrom), Geländewinkel 10°, Orientierung des Kollektors Süd, Neigungswinkel 30°

Kollektorkreis: Vertikale Leitung des Kollektorkreises: Längen pauschal, konditionierte Lage in Zone Wohnen, 2/3 gedämmt, Horizontale Leitung des Kollektorkreises: nicht konditioniert, 2/3 gedämmt

Wohnen

gegen Außen	Le	418,46	
über Unbeheizt	Lu	96,91	
über das Erdreich	Lg	0,00	
Leitwertzuschlag für linienformige und punktförmige Wärmebrücken		51,53	
Transmissionsleitwert der Gebäudehülle	LT	566,92	W/K
Lüftungsleitwert	LV	460,47	W/K
Mittlerer Wärmedurchgangskoeffizient	Um	0,385	W/m2

... gegen Außen, über Unbeheizt und das Erdreich

Bauteile gegen Außenluft

		m2	W/m2K	f	fH	W/K
Nord						
AW03	Feuermauer freistehend	77,31	0,278	1,0		21,49
AW04	Außenwand	18,44	0,209	1,0		3,86
AW06	Außenwand Liftschacht	3,50	0,179	1,0		0,63
AT01	Eingangstür 90/220	3,96	2,500	0,7		6,93
IW05	Wohnungstrennwand Wohnung/Wohnung, Stgl	42,76	0,593	0,7		17,75
IW09	Wohnungstrennwand Wohnung/Müllraum	7,92	0,321	0,7		1,78
		153,91				52,44
Ost						
AF16	Fenster/Fenstertür 110/246 o	62,33	0,900	1,0		56,10
AF20	Fenster/Fenstertür 110/226 o	4,98	0,900	1,0		4,48
AW04	Außenwand	175,61	0,209	1,0		36,70
AW05	Außenwand - Rampenabfahrt zu Wohnung	7,20	0,271	1,0		1,95
AW06	Außenwand Liftschacht	2,50	0,179	1,0		0,45
		252,62				99,68
Ost, 45°	° geneigt					
D08	Steildach-Blechdach	57,31	0,187	1,0		10,72
AF17	DFF 114/160 o	16,38	1,000	1,0		16,38
AF18	DFF 66/140 o	0,92	1,000	1,0		0,92
AF19	DFF 94/160 o	1,50	1,000	1,0		1,50
		76,11				29,52
Süd						
AF21	Fenster/Fenstertür 102/216 s	2,20	0,900	1,0		1,98
AW03	Feuermauer freistehend	98,60	0,278	1,0		27,41
AW04	Außenwand	20,56	0,209	1,0		4,30
AW05	Außenwand - Rampenabfahrt zu Wohnung	7,92	0,271	1,0		2,15
AW06	Außenwand Liftschacht	3,50	0,179	1,0		0,63
		132,78				36,47
West						
AF01	Fenster/Fenstertür 430/130 w	5,59	0,900	1,0		5,03
AF02	Fenster/Fenstertür 289/230 w	6,65	0,900	1,0		5,99
AF03	Fenster/Fenstertür 384/230 w	8,83	0,900	1,0		7,95
AF04	Fenster/Fenstertür 224/148 w	26,56	0,900	1,0		23,90
AF05	Fenster/Fenstert ür 102/236 w	16,87	0,900	1,0		15,18
AF06	Fenster/Fenstertür 148/236 w	20,94	0,900	1,0		18,85

West						
AF07	Fenster/Fenstertür 256/236 w	18,12	0,900	1,0		16,31
AF08	Fenster/Fenstertür 92/106 w	0,98	0,900	1,0		0,88
AF09	Fenster/Fenstertür 182/218 w	3,97	0,900	1,0		3,57
AF10	Fenster/Fenstertür 102/218 w	2,22	0,900	1,0		2,00
AF13	Fenster/Fenstertür 290/138 w	4,00	0,900	1,0		3,60
AF14	Fenster/Fenstertür 102/216 w	2,20	0,900	1,0		1,98
AF15	Fenster/Fenstertür 436/216 w	9,42	0,900	1,0		8,48
AW04	Außenwand	207,46	0,209	1,0		43,36
AW06	Außenwand Liftschacht	2,50	0,179	1,0		0,45
		336,31				157,53
West, 45	5° geneigt					
D08	Steildach-Blechdach	35,04	0,187	1,0		6,55
AF11	DFF 94/160 w	6,00	1,000	1,0		6,00
AF12	DFF 114/160 w	3,64	1,000	1,0		3,64
		44,68				16,19
Horizont	al					
D05	Dachterrasse	48,10	0,187	1,0		8,99
D06	Flachdach (Vakuumd. System Bauder)	124,40	0,197	1,0		24,51
D07	Liftschacht Warmdach	8,00	0,196	1,0		1,57
D09	Flachdach Gaupen	10,10	0,187	1,0		1,89
FB06	EG Stufenrampe ü. Rampeneinfahrt	30,80	0,197	1,0		6,07
FB09b	Wohnungstrenndecke ü. Außenluft	36,79	0,187	1,0	1,46	10,08
FB07	EG Wohnungsdecke ü. UG	118,00	0,232	0,9	1,46	36,12
FB09a	1.OG-2.DG Wohnungstrenndecke ü. Stiegenha	85,85	0,355	0,7	1,46	31,27
FB09c	Wohnungstrenndecke ü. Müllraum	15,10	0,198	0,7	1,46	3,07
		477,14				123,57

Summe **1.473,58**

... Leitwertzuschlag für linienformige und punktförmige Wärmebrücken

Leitwerte über Wärmebrücken

Wärmebrücken pauschal 51,53 W/K

... über Lüftung

Lüftungsleitwert

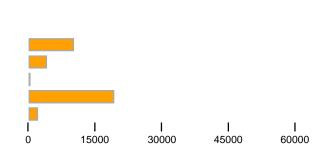
Fensterlüftung 460,47 W/K

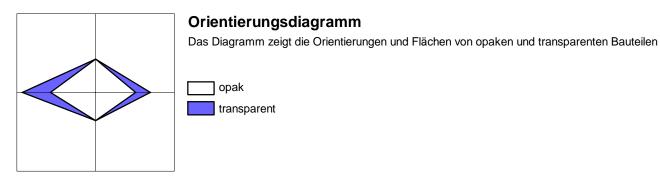
Lüftungsvolumen VL = 3.385,82 m3Luftwechselrate n = 0,40 1/h

Wohnen

Wirksame Wärmespeicherfähigkeit der Zone

schwere Bauweise


Interne Wärmegewinne


qi = 3,75 W/m2

Wärmeg	

Transpar	ente Bauteile	Anzahl	Fs -	Summe Ag m2	g -	A trans,h m2
Ost						
AF16	Fenster/Fenstertür 110/246 o	23	0,75	43,63	0,500	14,43
AF20	Fenster/Fenstertür 110/226 o	2	0,75	3,48	0,500	1,15
				47,11		15,58
Ost, 45	° geneigt					
AF17	DFF 114/160 o	9	0,75	11,46	0,500	3,79
AF18	DFF 66/140 o	1	0,75	0,64	0,500	0,21
AF19	DFF 94/160 o	1	0,75	1,05	0,500	0,34
				13,16		4,35
Süd						
AF21	Fenster/Fenstertür 102/216 s	1	0,75	1,54	0,500	0,50
				1,54		0,50
West						
AF01	Fenster/Fenstert ür 430/130 w	1	0,75	3,91	0,500	1,29
AF02	Fenster/Fenstertür 289/230 w	1	0,75	4,65	0,500	1,53
AF03	Fenster/Fenstertür 384/230 w	1	0,75	6,18	0,500	2,04
AF04	Fenster/Fenstertür 224/148 w	8	0,75	18,59	0,500	6,14
AF05	Fenster/Fenstertür 102/236 w	7	0,75	11,80	0,500	3,90
AF06	Fenster/Fenstertür 148/236 w	6	0,75	14,65	0,500	4,84
AF07	Fenster/Fenstert ür 256/236 w	3	0,75	12,68	0,500	4,19
AF08	Fenster/Fenstertür 92/106 w	1	0,75	0,68	0,500	0,22
AF09	Fenster/Fenstertür 182/218 w	1	0,75	2,77	0,500	0,91
AF10	Fenster/Fenstertür 102/218 w	1	0,75	1,55	0,500	0,51
AF13	Fenster/Fenstertür 290/138 w	1	0,75	2,80	0,500	0,92
AF14	Fenster/Fenstertür 102/216 w	1	0,75	1,54	0,500	0,50
AF15	Fenster/Fenstertür 436/216 w	1	0,75	6,59	0,500	2,18
				88,44		29,25
West, 4	15° geneigt					
AF11	DFF 94/160 w	4	0,75	4,20	0,500	1,38
AF12	DFF 114/160 w	2	0,75	2,54	0,500	0,84
				6,74		2,23

	Aw	Qs, h
	m2	kWh/a
Ost	67,31	10.272
Ost, 45° geneigt	18,80	4.184
Süd	2,20	411
West	126,35	19.282
West, 45° geneigt	9,64	2.145
	224,30	36.297

Strahlungsintensitäten

Wien-Döbling, 165 m

S	SO/SW	O/W	NO/NW	N	Н
kWh/m2	kWh/m2	kWh/m2	kWh/m2	kWh/m2	kWh/m2
34,61	27,84	17,17	11,97	11,45	26,02
55,68	45,68	29,98	20,93	19,51	47,58
76,32	67,38	51,15	34,10	27,60	81,19
80,94	79,78	69,37	52,03	40,47	115,63
90,29	95,04	91,87	72,86	57,02	158,41
80,58	90,24	91,86	77,35	61,24	161,16
82,21	91,89	93,50	75,77	59,64	161,21
88,39	91,20	82,78	60,33	44,89	140,31
81,61	74,72	59,98	43,26	35,39	98,32
68,61	57,91	40,28	26,44	23,29	62,95
38,34	30,55	18,44	12,68	12,10	28,82
29,71	23,34	12,73	8,68	8,29	19,29
	8Wh/m2 34,61 55,68 76,32 80,94 90,29 80,58 82,21 88,39 81,61 68,61 38,34	kWh/m2 kWh/m2 34,61 27,84 55,68 45,68 76,32 67,38 80,94 79,78 90,29 95,04 80,58 90,24 82,21 91,89 88,39 91,20 81,61 74,72 68,61 57,91 38,34 30,55	kWh/m2 kWh/m2 kWh/m2 kWh/m2 34,61 27,84 17,17 55,68 45,68 29,98 76,32 67,38 51,15 80,94 79,78 69,37 90,29 95,04 91,87 80,58 90,24 91,86 82,21 91,89 93,50 88,39 91,20 82,78 81,61 74,72 59,98 68,61 57,91 40,28 38,34 30,55 18,44	kWh/m2 kWh/m2 kWh/m2 kWh/m2 kWh/m2 34,61 27,84 17,17 11,97 55,68 45,68 29,98 20,93 76,32 67,38 51,15 34,10 80,94 79,78 69,37 52,03 90,29 95,04 91,87 72,86 80,58 90,24 91,86 77,35 82,21 91,89 93,50 75,77 88,39 91,20 82,78 60,33 81,61 74,72 59,98 43,26 68,61 57,91 40,28 26,44 38,34 30,55 18,44 12,68	kWh/m2 kWh/m2 kWh/m2 kWh/m2 kWh/m2 kWh/m2 34,61 27,84 17,17 11,97 11,45 55,68 45,68 29,98 20,93 19,51 76,32 67,38 51,15 34,10 27,60 80,94 79,78 69,37 52,03 40,47 90,29 95,04 91,87 72,86 57,02 80,58 90,24 91,86 77,35 61,24 82,21 91,89 93,50 75,77 59,64 88,39 91,20 82,78 60,33 44,89 81,61 74,72 59,98 43,26 35,39 68,61 57,91 40,28 26,44 23,29 38,34 30,55 18,44 12,68 12,10

Gesamt			1.627,80 m2	4.783,94 m3
Wohnen	beheizt		1.627,80	4.783,94
Wohnen				
beheizt				
		Höhe [m]	[m2]	[m3]
ERDGESCHOSS				
EG	1x 148,80	3,96	148,80	589,24
Abzug Rampe	1x -34,0			-34,00
1.OBERGESCHOSS				
1.OG	1x 271,40	2,82	271,40	765,34
2.OBERGESCHOSS				
2.OG	1x 271,40	2,82	271,40	765,34
3.OBERGESCHOSS				
3.OG	1x 271,40	2,82	271,40	765,34
4.OBERGESCHOSS				
4.OG	1x 271,40	2,82	271,40	765,34
1.DACHGESCHOSS				
1.DG (A)	1x 246,80		246,80	
1.DG (V)	1x 724,10			724,10
2.DACHGESCHOSS				
2.DG (A)	1x 146,6		146,60	
1.DG (V)	1x 435,20+8,0			443,20

AF01 AF	Fenster/Fenstertür 430/130 w						Neubau
AF		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	3,91	70,00	
	Rahmen				1,68	30,00	
	Glasrandverbund						
				vorh.	5,59		0,90
AF02	Fenster/Fenstertür 289/230 w						Neubau
AF		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	4,66	70,00	
	Rahmen				2,00	30,00	
	Glasrandverbund						
4500	F						Naukan
AF03 AF	Fenster/Fenstertür 384/230 w						Neubau
	_	Länge	psi	g	Fläche	%	U
		m	W/mK	-	m2		W/m2K
	Verglasung			0,500	6,18	70,00	
	Rahmen				2,65	30,00	
	Glasrandverbund						
	Glasrandverbund			vorh.	8,83		0,90
	Fenster/Fenstertür 224/148 w			vorh.	8,83		0,90
		Länge	psi		8,83	%	
		Länge m	psi W/mK	vorh.		%	Neubau
				g	Fläche	%	Neubau U
	Fenster/Fenstertür 224/148 w			g -	Fläche m2		Neubau U
AF04 AF	Fenster/Fenstertür 224/148 w Verglasung			g -	Fläche m2 2,32	70,00	Neubau U

0,98

vorh.

0,90

Bauteilliste

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

AF	Fenster/Fenstertür 102/236 w						Neubau
		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,69	70,00	
	Rahmen				0,72	30,00	
	Glasrandverbund						
				vorh.	2,41		0,90
AF06	Fenster/Fenstertür 148/236 w						Neubau
AF		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	2,44	70,00	
	Rahmen				1,05	30,00	
	Glasrandverbund						
4507							0,90
AFU/	Fenster/Fenstertür 256/236 w						Neubau
	Fenster/Fenstertür 256/236 w						
	Fenster/Fenstertür 256/236 w	Länge	psi	g	Fläche	%	U
AF07 AF	_	Länge m	psi W/mK	-	m2		U
					m2 4,23	70,00	U
	Verglasung Rahmen			-	m2		U
				-	m2 4,23	70,00	U W/m2K
AF	Verglasung Rahmen Glasrandverbund			0,500	m2 4,23 1,81	70,00	U W/m2K
AF08	Verglasung Rahmen	m	W/mK	0,500	m2 4,23 1,81 6,04	70,00	U W/m2K 0,90
AF08	Verglasung Rahmen Glasrandverbund		W/mK	- 0,500 vorh.	m2 4,23 1,81	70,00	U W/m2K 0,90 Neubau
AF08	Verglasung Rahmen Glasrandverbund Fenster/Fenstertür 92/106 w	m	W/mK	- 0,500 vorh.	m2 4,23 1,81 6,04 Fläche m2	70,00 30,00	U W/m2K 0,90 Neubau
	Verglasung Rahmen Glasrandverbund Fenster/Fenstertür 92/106 w Verglasung	m Länge	W/mK	- 0,500 vorh.	m2 4,23 1,81 6,04 Fläche m2 0,69	70,00 30,00 %	U W/m2K 0,90 Neubau
AF08	Verglasung Rahmen Glasrandverbund Fenster/Fenstertür 92/106 w	m Länge	W/mK	- 0,500 vorh.	m2 4,23 1,81 6,04 Fläche m2	70,00 30,00	U W/m2K

Fenster/Fenstertür 182/218 w						Neubau
	Länge	psi	g	Fläche	%	U
_	m	W/mK	-	m2		W/m2K
Verglasung			0,500	2,78	70,00	
				1,19	30,00	
Glasrandverbund						
			vorh.	3,97		0,90
Fenster/Fenstertür 102/218 w						Neubau
	Längo	nai	~	Eläaba	0/	U
_					/0	W/m2K
Voralasuna	111	VV/IIIK			70.00	VV/IIIZN
			0,300			
				0,01	00,00	
			vorh.	2,22		0,90
DFF 94/160 w						Neubau
	1 =	:	_	Elä ab a	0/	
_					%	U W/m2K
Veralasuna	111	VV/IIIX			70.00	VV/IIIZK
Rahmen Glasrandverbund			0,000	0,45	30,00	
			vorh.	1,50		1,00
DFF 114/160 w						Neubau
_	Länge	psi	g	Fläche	%	U
	m	W/mK	-	m2		W/m2K
Verglasung			0,500	1,27	70,00	
_ ·						
Rahmen Glasrandverbund				0,55	30,00	
	Verglasung Rahmen Glasrandverbund Fenster/Fenstertür 102/218 w Verglasung Rahmen Glasrandverbund DFF 94/160 w Verglasung Rahmen Glasrandverbund Verglasung Rahmen Glasrandverbund	Fenster/Fenstertür 102/218 w Fenster/Fenstertür 102/218 w Länge m Verglasung Rahmen Glasrandverbund DFF 94/160 w Länge m Verglasung Rahmen Glasrandverbund Länge m Länge m Länge m	Länge psi m W/mk	Länge meh glasung Rahmen Glasrandverbund Länge meh geleichtet wir 102/218 w psi geleichtet wir 102/218 w vorh. Fenster/Fenstertür 102/218 w Länge psi geleichtet wir meh ge	Länge m psi m g bit me	Länge psi g Fläche % Verglasung Rahmen Glasrandverbund 0,500 2,78 70,00 Rahmen Glasrandverbund vorh. 3,97 7 Länge psi g Fläche % Verglasung Rahmen Glasrandverbund 0,500 1,55 70,00 DFF 94/160 w Länge psi g Fläche % Länge psi g Fläche % Worth. 2,22 vorh. 2,22 DFF 94/160 w Länge psi g Fläche % Worglasung Rahmen Glasrandverbund 0,500 1,05 70,00 <

AF13 AF	Fenster/Fenstertür 290/138 w						Neubau
	_	Länge	psi	g	Fläche	%	U
		m	W/mK	-	m2		W/m2K
	Verglasung			0,500	2,80	70,00	
	Rahmen				1,20	30,00	
	Glasrandverbund						
				vorh.	4,00		0,90
AF14	Fenster/Fenstertür 102/216 w						Neubau
AF		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,54	70,00	
	Rahmen				0,66	30,00	
	Glasrandverbund						
AF15	Fenster/Fenstertür 436/216 w						Neubau
AF						0.4	
	_	Länge	psi	g	Fläche	%	U
	Verglasung	m	W/mK	0,500	6,59	70,00	W/m2K
	vergiasung Rahmen			0,500	2,83	30,00	
	Glasrandverbund				2,03	30,00	
				vorh.	9,42		0,90
AF16	Fenster/Fenstertür 110/246 o						Neubau
AF							
	_	Länge	psi	g	Fläche	%	U
		m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,90	70,00	
	Rahmen				0,81	30,00	
	Glasrandverbund						
				vorh.	2,71		0,90

AF17 DF	DFF 114/160 o						Neubau
		Länge	psi	g	Fläche	%	U
		m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,27	70,00	
	Rahmen				0,55	30,00	
	Glasrandverbund						
				vorh.	1,82		1,00
AF18	DFF 66/140 o						Neubau
DF							
	_	Länge	psi	g	Fläche	%	U
		m	W/mK	-	m2		W/m2K
	Verglasung			0,500	0,64	70,00	
	Rahmen				0,28	30,00	
	Glasrandverbund						
AF19	DFF 94/160 o						Neubau
DF							
		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,05	70,00	
	Rahmen Glasrandverbund				0,45	30,00	
				vorh.	1,50		1,00
AF20	Fenster/Fenstertür 110/226 o						Neubau
AF							
	_	Länge	psi	g	Fläche	%	U
		m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,74	70,00	
	Rahmen				0,75	30,00	
	Glasrandverbund						
				vorh.	2,49		0,90

AF21	Fenster/Fenstertür 102/216 s						Neubau
AF							
		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung			0,500	1,54	70,00	
	Rahmen				0,66	30,00	
	Glasrandverbund						
				vorh.	2,20		0,90

AT01	Eingangstür 90/220						Neubau
TGu							
		Länge	psi	g	Fläche	%	U
	_	m	W/mK	-	m2		W/m2K
	Verglasung				0,00	0,00	
	Rahmen				1,98	100,00	
	Glasrandverbund						
				vorh.	1,98		2,50

AW01	Außenwand UG			Neubau
EWKu	A-I			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	 Austrotherm TOP® 30 d = 8 cm (bis 1m u. GOK) 	0,0800		
2	Stahlbeton-Wand It. Statik	0,4500	2,300	0,196
	Wärmeübergangswiderstände			0,130
		0,5300	RT =	0,326
			U =	3,067

AW01a		Außenwand UG			Neubau
EWKu		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	•	Austrotherm TOP® 30 d = 8 cm	0,0800	0,037	2,162
2		Stahlbeton-Wand It. Statik	0,4500	2,300	0,196
		Wärmeübergangswiderstände			0,130
			0,5300	RT =	2,488
				U =	0,402

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

AW02		Feuermauer angebaut			Neubau
WGU		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	•	Steinwolle Trennfugenplatte	0,1200	0,040	3,000
2		Stahlbeton-Wand It. Statik	0,1800	2,300	0,078
3		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,260
			0,3050	RT =	3,342
				U =	0,299

AW02a		Feuermauer angebaut - Rampe			Neubau
WGU		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	•	Steinwolle Trennfugenplatte	0,1200	0,040	3,000
2		Stahlbeton-Wand It. Statik	0,2100	2,300	0,091
3	•	ROCKWOOL Coverrock 035	0,1200	0,035	3,429
4	•	Silikatputz	0,0050	0,800	0,006
		Wärmeübergangswiderstände			0,260
			0,4550	RT =	6,786
				U =	0.147

AW03		Feuermauer freistehend			Neubau
AW		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	•	Silikatputz	0,0050	0,800	0,006
2	•	ROCKWOOL Coverrock 035	0,1200	0,036	3,333
3		Stahlbeton-Wand It. Statik	0,1800	2,300	0,078
4		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,170
			0,3100	RT =	3,591
				U =	0,278

AW04		Außenwand			Neubau
AW		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	•	Silikatputz	0,0050	0,800	0,006
2	•	Austrotherm EPS® F-Plus	0,1400	0,031	4,516
3		Stahlbeton-Wand It. Statik	0,1800	2,300	0,078
4		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,170
			0,3300	RT=	4,774
				U =	0,209

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

AW04a		Außenwand EG-Fassadenplatten			Neubau
UW		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1		Fassadenplatten	0,0060		
2		Hinterlüftung UK	0,0300		
3	•	Winddichtung	0,0006	0,420	0,001
4		ISOVER FDPL Fassadendämmplatte 10	0,1000	0,034	2,941
5		Stahlbeton-Wand It. Statik	0,2000	2,300	0,087
6		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,260
			0,3420	RT =	3,293
				U =	0.304

AW05		Außenwand - Rampenabfahrt zu Wohnung			Neubau
AW		A-I			
			d [m]	λ [W/mK]	R [m2K/W]
1	•	Silikatputz	0,0050	0,800	0,006
2	•	ROCKWOOL Coverrock 035	0,1200	0,035	3,429
3		Stahlbeton-Wand It. Statik	0,1800	2,300	0,078
4		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,170
			0,3100	RT =	3,687
				U =	0,271

AW06		Außenwand Liftschacht			Neubau
AW		A-I			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	•	Silikatputz	0,0050	0,800	0,006
2		AUSTROTHERM EPS F PLUS	0,1400	0,031	4,516
3		Stahlbeton-Wand It. Statik	0,1600	2,300	0,070
4	•	Trennfugenplatte	0,0300	0,039	0,769
5		Stahlbeton-Wand It. Statik	0,1200	2,300	0,052
		Wärmeübergangswiderstände			0,170
	-		0,4550	RT=	5,583
				U =	0,179

1190, Heiligenst ädterstraße 93 NEUBAU WOHNHAUS

D01	Garagenrampe / Decke ü. UG			Neubau
DU	O-U			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Asphalt/Feinbeton	0,0300	0,700	0,043
2	Stahlbeton-Decke im Gefälle lt. Statik	0,1200	2,300	0,052
3	PAE-Folie	0,0004	0,230	0,002
4	AUSTROTHERM XPS TOP 70	0,0600	0,038	1,579
5	Abdichtung	0,0150	0,230	0,065
6	Stahlbeton-Decke im Gefälle It. Statik	0,2000	2,300	0,087
	Wärmeübergangswiderstände			0,200
		0,4250	RT =	2,028
			U =	0.493

D02		Terrasse über Garage			Neubau
DU		O-U			
			d [m]	$\lambda [W/mK]$	R [m2K/W]
1		Beton	0,1200	1,100	0,109
2		Vlies	0,0000		
3		Austrotherm TOP® 30 d = 6 cm	0,0600	0,035	1,714
4	•	Abdichtung (Wurzelfest)	0,0150	0,230	0,065
5	•	Voranstrich	0,0000	0,230	0,000
6		Stahlbeton-Decke im Gefälle lt. Statik	0,3000	2,300	0,130
7	•	ISOVER KDP Kellerdecken-Dämmplatte 9	0,0900	0,032	2,813
		Wärmeübergangswiderstände			0,200
			0,5850	RT =	5,031
				U =	0,199

Schicht 7: Im Randbereich zu Wohnunng

D03		Gründach über Garage O-U			Neubau
			d [m]	λ [W/mK]	R [m2K/W]
1		Substrat	0,2000		
2		Filtervlies	0,0000		
3		Drainagekies	0,1000		
4	•	Drainagematte	0,0100		
5		Austrotherm TOP® 30 d = 6 cm	0,0600	0,035	1,714
6	•	Abdichtung (Wurzelfest)	0,0150	0,230	0,065
7	•	Voranstrich	0,0000	0,230	0,000
8		Stahlbeton-Decke im Gefälle lt. Statik	0,3000	2,300	0,130
		Wärmeübergangswiderstände			0,200
			0,6850	RT =	2,109
				U =	0,474

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

D04		Decke ü. UG / Eingang EG			Neubau
DU		O-U			
			d [m]	λ [W/mK]	R [m2K/W]
1		Fußabstreifgitter-Stahlrost	0,0250		
2		Kies	0,0500		
3	•	Gummigranulatmatte	0,0100		
4		Abdichtung	0,0100	0,230	0,043
5		Austrotherm EPS® Gefälledachplatte	0,1200	0,035	3,429
6		Dampfsperre	0,0050	0,170	0,029
7	•	Voranstrich	0,0020	0,230	0,009
8		Stahlbeton-Decke It. Statik	0,1200	2,300	0,052
9		ISOVER KDP Kellerdecken-Dämmplatte 9	0,0900	0,032	2,813
		Wärmeübergangswiderstände			0,200
			0,4320	RT =	6,575
				U =	0,152

D05	Dachterrasse			Neubau
AD	O-U			
		d [m]	λ[W/mK]	R [m2K/W]
1	Belag auf UK	0,0600		
2	Kies	0,0500		
3	Vlies	0,0000		
4	Gummigranulatmatte	0,0100	0,170	0,059
5	Abdichtung	0,0100		
6	BauderPIR T, Gefälledämmung	0,1200	0,025	4,800
7	steinophon 290-TDZ (10mm)	0,0100	0,045	0,222
8	Dampfsperre	0,0040	0,170	0,024
9	Dampfdruckausgleich	0,0040	0,230	0,017
10	Voranstrich	0,0000	0,230	0,000
11	Stahlbeton-Decke It. Statik	0,2000	2,300	0,087
12	Spachtelung	0,0050	1,400	0,004
	Wärmeübergangswiderstände			0,140
		0,4730	RT=	5,353
			U =	0,187

D06		Flachdach (Vakuumd. System Bauder)			Neubau
AD		O-U			
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
	1	Abdichtung Brooft1/UV-best.	0,0100	0,230	0,043
	2	BauderPIR T, Gefälledämmung	0,0400	0,028	1,429
-	3	BauderPIR (als Oberschichte von VIP TE)	0,0150	0,030	0,500
	4	Vakuum-Dämmplatte (Bauder VIP TE)	0,0200	0,007	2,857
	5	Dampfsperre Bauder Super AL-E	0,0040	0,170	0,024
	6	Voranstrich Bauder Burkolit V	0,0000	0,230	0,000
	7	Stahlbeton-Decke It. Statik	0,1800	2,300	0,078
	8	Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,140
			0,2740	RT =	5,075
				U =	0,197

Schicht 1: Es ist darauf zu achten, dass eine

Flugfeuerbeständigkeit des gesamten Systems (Abdichtung und Dämmschichte/Wärmedämmung) nachgewiesen wird. Kann der Nachweis mit den ausgewählten Produkten nicht erbracht werden sind entsprechend ander Produkte zu verwenden.

D07	Liftschacht Warmdach			Neubau
AD	O-U			
		d [m]	λ [W/mK]	R [m2K/W]
1	Abdichtung brooft1/UV-best.	0,0100	0,230	0,043
2	BauderPIR T, Gefälledämmung	0,1200	0,025	4,800
3	Dampfsperre	0,0040	0,170	0,024
4	Dampfdruckausgleich	0,0040	0,230	0,017
5	Voranstrich	0,0000	0,230	0,000
6	Stahlbeton-Decke It. Statik	0,2000	2,300	0,087
	Wärmeübergangswiderstände			0,140
		0,3380	RT =	5,111
			U =	0,196

Schicht 1: Es ist daraucf zu achten das mit den ausgew ählten Produkten die Flufeuerbeständigkeit des gesamten Systems (Abdichtung/Dämmstoffe-Wärmedämmung) nachgewiesen wird. Ist der Nachweis mit den

ausgewählten Produkten nicht zu erbringen sind entsprechend ander Produkte zu verwenden.

D08		Steildach-Blechdach			Neubau
ADh		O-U			
	Lage		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1		Blecheindeckung	0,0010		
2	•	Trennlage	0,0050		
3		Vollholzschalung	0,0240		
4		Konterlattung Hinterlüftung	0,0500		
5	•	Unterdachbahn diff. offen	0,0006	0,220	0,003
6		Vollholzschalung	0,0240	0,150	0,160
7.0		Vollholzsparren	0,2400	0,170	1,412
		Breite: 0,10 m Achsenabstand: 0,80 m			
7.1		ISOVER MULTI-KOMFORT Klemmfilz 24	0,2400	0,034	7,059
8		Dampfsperre	0,0050	0,170	0,029
9		Stahlbeton-Decke lt. Statik	0,2000	2,300	0,087
10		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,200
		RTo=5,495 m2K/W; RTu=5,189 m2K/W;	0,5550	RT =	5.342
				U =	0,187

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

D09		Flachdach Gaupen			Neubau
AD		O-U			
			d [m]	λ [W/mK]	R [m2K/W]
1		Kies	0,0500		
2		Vlies	0,0000		
3		Gummigranulatmatte	0,0100	0,170	0,059
4		Abdichtung	0,0100		
5	•	BauderPIR T, Gefälledämmung	0,1200	0,025	4,800
6		steinophon 290-TDZ (10mm)	0,0100	0,045	0,222
7		Dampfsperre	0,0040	0,170	0,024
8		Dampfdruckausgleich	0,0040	0,230	0,017
9	•	Voranstrich	0,0000	0,230	0,000
10		Stahlbeton-Decke It. Statik	0,1800	2,300	0,078
11		Spachtelung	0,0050	1,400	0,004
		Wärmeübergangswiderstände			0,140
			0,3930	RT =	5,344
				U =	0,187

FB01	Garage UG			Neubau
EBKu	U-O			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Sauberkeitsschichte	0,0800		
2	Stahlbeton-Decke (Dichtbeton, OK im Gef.)	0,4000	2,300	0,174
3	Asphalt-Feinbeton, Abdichtung	0,0300	0,700	0,043
	Wärmeübergangswiderstände			0,170
		0,5100	RT =	0,387
			U =	2.584

FB02	UG Stiegenhaus			Neubau
EBKu	U-O			
		d [m]	λ [W/mK]	R [m2K/W]
1	Sauberkeitsschichte	0,0800		,
2	AUSTROTHERM XPS TOP 50	0,0600	0,038	1,579
3	PAE-Folie	0,0004	0,230	0,002
4	Stahlbeton-Decke (Dichtbeton) lt. Statik	0,6000	2,300	0,261
5	PAE-Folie	0,0004	0,230	0,002
6	steinophon 290-TDZ (10mm)	0,0100	0,045	0,222
7	PAE-Folie	0,0004	0,230	0,002
8	Estrich	0,0500	1,400	0,036
9	Feinsteinzeug im Dünnbett	0,0100	1,000	0,010
	Wärmeübergangswiderstände			0,170
		0,8110	RT =	2,284
			U =	0,438

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

FB03	UG Nebenräume			Neubau
EBKu	U-O			
		d [m]	λ [W/mK]	R [m2K/W]
1	Sauberkeitsschichte	0,0800		
2	AUSTROTHERM XPS TOP 50	0,0600	0,038	1,579
3	PAE-Folie	0,0004	0,230	0,002
4	Stahlbeton-Decke (Dichtbeton) lt. Statik	0,6000	2,300	0,261
5	PAE-Folie	0,0004	0,230	0,002
6	steinophon 290-TDZ (10mm)	0,0100	0,045	0,222
7	PAE-Folie	0,0004	0,230	0,002
8	Estrich versiegelt	0,0600	1,400	0,043
	Wärmeübergangswiderstände			0,170
		0,8110	RT =	2,281
			U =	0,438

FB04	EG Stiegenhaus			Neubau
DGU ₀	U-O			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipsfaserplatte	0,0125	0,360	0,035
2	Abgeh. Decke dazw. Mineralwolle	0,0500	0,039	1,282
3	Stahlbeton-Decke lt. Statik	0,2000	2,300	0,087
4	thermotec® BEPS-WD 100R	0,0400	0,050	0,800
5	PAE-Folie	0,0004	0,230	0,002
6	Austrotherm EPS® T-650 d = 2,3 cm	0,0200	0,044	0,455
7	PAE-Folie	0,0004	0,230	0,002
8	Estrich	0,0500	1,400	0,036
9	Feinsteinzeug im Dünnbett	0,0100	1,000	0,010
	Wärmeübergangswiderstände			0,340
		0,3830	RT =	3,049
			U =	0,328

FB04a	EG Stiegenhaus ü. Garage			Neubau
DggG	U-O			
		d [m]	λ[W/mK]	R [m2K/W]
1	ISOVER KDP Kellerdecken-Dämmplatte 9	0,0900	0,032	2,813
2	Stahlbeton-Decke lt. Statik	0,2500	2,300	0,109
3	thermotec® BEPS-WD 100R	0,0300	0,050	0,600
4	PAE-Folie	0,0004	0,230	0,002
5	Austrotherm EPS® T-650 d = 2,3 cm	0,0200	0,044	0,455
6	PAE-Folie	0,0004	0,230	0,002
7	Estrich	0,0500	1,400	0,036
8	Feinsteinzeug im Dünnbett	0,0100	1,000	0,010
	Wärmeübergangswiderstände			0,340
		0,4510	RT =	4,367
			U =	0,229

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

FB05	EG Müllraum			Neubau
DU	O-U			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gußasphalt	0,0250	0,700	0,036
2	Abdichtung	0,0050	0,230	0,022
3	Estrich im Gefälle	0,0600	1,400	0,043
4	PAE-Folie	0,0004	0,230	0,002
5	Austrotherm EPS® T-1000 d = 3,2 cm	0,0300	0,038	0,789
6	PAE-Folie	0,0004	0,230	0,002
7	Stahlbeton-Decke lt. Statik	0,2000	2,300	0,087
8	ISOVER KDP Kellerdecken-Dämmplatte 9	0,0900	0,032	2,813
	Wärmeübergangswiderstände			0,200
		0,4110	RT =	3,994
			U =	0,250

FB06		EG Stufenrampe ü. Rampeneinfahrt			Neubau
DD		U-O			
			d [m]	λ [W/mK]	R [m2K/W]
1		ISOVER KDP Kellerdecken-Dämmplatte 12	0,1200	0,032	3,750
2		Stahlbeton-Decke (Dichtbeton) lt. Statik	0,1800	2,300	0,078
3		PAE-Folie	0,0004	0,230	0,002
4	•	AUSTROTHERM EPS T1000 PLUS	0,0300	0,032	0,938
5		PAE-Folie	0,0004	0,230	0,002
6		Estrich/Betonstufen	0,0600	1,400	0,043
7		Parkettboden	0,0100	0,170	0,059
		Wärmeübergangswiderstände			0,210
			0,4010	RT =	5,082
				U =	0,197

FB07	EG Wohnungsdecke ü. UG				Neubau
DggG	U-O				
			d [m]	λ [W/mK]	R [m2K/W]
1	ISOVER KDP Kellerdecken-Dämmplatte 9		0,0900	0,032	2,813
2	Stahlbeton-Decke lt. Statik		0,2500	2,300	0,109
3	thermotec® BEPS-WD 100R		0,0250	0,050	0,500
4	PAE-Folie		0,0004	0,230	0,002
5	Austrotherm EPS® T-650 d = 2,3 cm		0,0200	0,044	0,455
6	PAE-Folie		0,0004	0,230	0,002
7	Estrich (Heiz-)	F	0,0650	1,400	0,046
8	Parkettboden geklebt		0,0100	0,200	0,050
	Wärmeübergangswiderstände				0,340
			0,4610	RT =	4,317
	F = Schicht mit Flächenheizung			U =	0,232

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

FB08	2.OG-1.DG Stiegenhaus			Neubau
IDo	U-O			
		d [m]	λ [W/mK]	R [m2K/W]
1	Spachtelung	0,0050	1,400	0,004
2	Stahlbeton-Decke lt. Statik	0,1800	2,300	0,078
3	thermotec® BEPS-WD 100R	0,0300	0,050	0,600
4	PAE-Folie	0,0004	0,230	0,002
5	Austrotherm EPS® T-650 d = 2,3 cm	0,0200	0,044	0,455
6	PAE-Folie	0,0004	0,230	0,002
7	Estrich	0,0600	1,400	0,043
8	Feinsteinzeug im Dünnbett	0,0100	1,000	0,010
	Wärmeübergangswiderstände			0,340
		0,3060	RT =	1,534
			U =	0,652

FB08a	1.OG Stiegenhaus U-O			Neubau
		d [m]	λ[W/mK]	R [m2K/W]
1	Gipskartonplatten	0,0125	0,210	0,060
2	Abgeh. Decke dazw. Mineralwolle	0,0500	0,039	1,282
3	Stahlbeton-Decke lt. Statik	0,1800	2,300	0,078
4	thermotec® BEPS-WD 100R	0,0300	0,050	0,600
5	PAE-Folie	0,0004	0,230	0,002
6	Austrotherm EPS® T-650 d = 2,3 cm	0,0200	0,044	0,455
7	PAE-Folie	0,0004	0,230	0,002
8	Estrich	0,0600	1,400	0,043
9	Feinsteinzeug im Dünnbett	0,0100	1,000	0,010
	Wärmeübergangswiderstände			0,340
		0,3630	RT =	2,872
			U =	0,348

FB09	1.OG-2.DG Wohnungstrenndecke				Neubau
WDo	U-O				
			d [m]	λ [W/mK]	R [m2K/W]
1	Spachtelung		0,0050	1,400	0,004
2	Stahlbeton-Decke lt. Statik		0,1800	2,300	0,078
3	thermotec® BEPS-WD 100R		0,0250	0,050	0,500
4	PAE-Folie		0,0004	0,230	0,002
5	Austrotherm EPS® T-650 d = 2,3 cm		0,0200	0,044	0,455
6	PAE-Folie		0,0004	0,230	0,002
7	Estrich (Heiz-)	F	0,0650	1,400	0,046
8	Parkettboden geklebt		0,0100	0,200	0,050
	Wärmeübergangswiderstände				0,200
			0,3060	RT =	1,337
	F = Schicht mit Flächenheizung			U =	0.748

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

FB09a	9a 1.OG-2.DG Wohnungstrenndecke ü. Stiegenhaus			Neubau
DGUo	U-O			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonplatten	0,0125	0,210	0,060
2	Abgeh. Decke +Mineralwolle	0,0500	0,039	1,282
3	Stahlbeton-Decke It. Statik	0,1800	2,300	0,078
4	thermotec® BEPS-WD 100R	0,0250	0,050	0,500
5	PAE-Folie	0,0004	0,230	0,002
6	Austrotherm EPS® T-650 d = 2,3 cm	0,0200	0,044	0,455
7	PAE-Folie	0,0004	0,230	0,002
8	Estrich (Heiz-)	0,0650	1,400	0,046
9	Parkettboden geklebt	0,0100	0,200	0,050
	Wärmeübergangswiderstände			0,340
-		0,3630	RT =	2,815
	F = Schicht mit Flächenheizung		U =	0,355

FB09b	Wohnungstrenndecke ü. Außenluft				Neubau
DD	U-O				
			d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Silikatputz		0,0050	0,800	0,006
2	ROCKWOOL Coverrock 035		0,1400	0,035	4,000
3	Stahlbeton-Decke lt. Statik		0,1800	2,300	0,078
4	thermotec® BEPS-WD 100R		0,0250	0,050	0,500
5	PAE-Folie		0,0004	0,230	0,002
6	Austrotherm EPS® T-650 d = 2,3 cm		0,0200	0,044	0,455
7	PAE-Folie		0,0004	0,230	0,002
8	Estrich (Heiz-)	F	0,0650	1,400	0,046
9	Parkettboden geklebt		0,0100	0,200	0,050
	Wärmeübergangswiderstände				0,210
		-	0,4460	RT =	5,349
	F = Schicht mit Flächenheizung			U =	0.187

FB09c DGUo	Wohnungstrenndecke ü. Müllraum U-O				Neubau
			d [m]	λ[W/mK]	R [m2K/W]
1	Tektalan A2 E-31-035/2 (12,5 cm)		0,1250	0,035	3,571
2	Stahlbeton-Decke lt. Statik		0,1800	2,300	0,078
3	thermotec® BEPS-WD 100R		0,0250	0,050	0,500
4	PAE-Folie		0,0004	0,230	0,002
5	Austrotherm EPS® T-650 d = 2,3 cm		0,0200	0,044	0,455
6	PAE-Folie		0,0004	0,230	0,002
7	Estrich (Heiz-)	F	0,0650	1,400	0,046
8	Parkettboden geklebt		0,0100	0,200	0,050
	Wärmeübergangswiderstände				0,340
			0,4260	RT =	5,044
	F = Schicht mit Flächenheizung			U =	0,198

1190, Heiligenst ädterstraße 93 NEUBAU WOHNHAUS

FB10a DGS	Wohnungstrenndecke (Treppe) ü. Stiegenhaus			Neubau
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonplatten	0,0125	0,210	0,060
2	Abgeh. Decke +Isover Premium WDF	0,0750	0,032	2,344
3	Stahlbeton-Decke lt. Statik (Stiegenlaufplatte)	0,1800	2,300	0,078
4	Parkettboden	0,0100	0,200	0,050
	Wärmeübergangswiderstände			0,340
		0,2780	RT =	2,872
			U =	0,348

Schicht 3: Stiegnlaufplatte von den angrenzenmden Bauteilen schalltechnisch entkoppelt.

IW01	UG Innenwand tragend			Neubau
IW	A-I			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Spachtelung	0,0050	1,400	0,004
2	Stahlbeton-Wand It. Statik	0,2000	2,300	0,087
3	Spachtelung	0,0050	1,400	0,004
	Wärmeübergangswiderstände			0,260
		0,2100	RT =	0,355
			U =	2,817

IW010	Wohnungstrennwand Leichtbau			Neubau
WW	A-I			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonfeuerschutzplatten	0,0125	0,210	0,060
2	Gipskartonfeuerschutzplatten	0,0125	0,210	0,060
3	C-Profil (75mm)+Mineralwolle	0,0750	0,039	1,923
4	Gipskartonfeuerschutzplatten	0,0125	0,210	0,060
5	Schaumstoffstreifen	0,0030	0,060	0,050
6	C-Profil (75mm)+Mineralwolle	0,0750	0,039	1,923
7	Gipskartonfeuerschutzplatten	0,0125	0,210	0,060
8	Gipskartonfeuerschutzplatter	0,0125	0,210	0,060
	Wärmeübergangswiderstände			0,260
		0,2160	RT =	4,456
			U =	0,224

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

IW02	Innenwand Hohlblock			Neubau
IW	A-I			
		d [m]	λ [W/mK]	R [m2K/W]
1	Innenputz (Kalk-Zement)	0,0100	0,800	0,013
2	Betonhohlblockstein	0,1000	0,650	0,154
3	Innenputz (Kalk-Zement)	0,0100	0,800	0,013
	Wärmeübergangswiderstände			0,260
		0,1200	RT =	0,44
			U =	2,273

IW03	STB-Innenwand tragend			Neubau
IW	A-I			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Spachtelung	0,0050	1,400	0,004
2	Stahlbeton-Wand It. Statik	0,1800	2,300	0,078
3	Spachtelung	0,0050	1,400	0,004
	Wärmeübergangswiderstände			0,260
		0,1900	RT =	0,346
			U =	2,890

IW04 ww	Wohnungstrennwand Aufzug./Whng.			Neubau
		d [m]	λ[W/mK]	R [m2K/W]
1	Stahlbeton-Wand It. Statik	0,1200	2,300	0,052
2	Trennfugenplatte	0,0300	0,039	0,769
3	Stahlbeton-Wand It. Statik	0,1600	2,300	0,070
4	Spachtelung	0,0050	1,400	0,004
	Wärmeübergangswiderstände			0,260
		0,3150	RT =	1,155
			U =	0,866

IW05 WGS	Wohnungstrennwand Wohnung/Wohnung, Stgh./Whng			Neubau
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Spachtelung	0,0050	1,400	0,004
2	Stahlbeton-Wand	0,1800	2,300	0,078
3	C-Profil (50mm)+Mineralwolle	0,0500	0,039	1,282
4	Hygrodiode 20 - classic	0,0004	0,250	0,002
5	Gipskartonplatten	0,0125	0,210	0,060
	Wärmeübergangswiderstände			0,260
		0,2480	RT =	1,686
			U =	0,593

1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

IW06	Innenwand Leichtbau			Neubau
IW	A-I, Mehrschalige Trennwand			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonplatten	0,0125	0,210	0,060
2	C-Profil (75mm)+Mineralwolle	0,0750	0,039	1,923
3	Gipskartonplatten	0,0125	0,210	0,060
	Wärmeübergangswiderstände			0,260
		0,1000	RT =	2,303
			U =	0.434

IW06a	Innenwand Leichtbau Feuchtraum			Neubau
IW	A-I, Mehrschalige Trennwand			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonplatten I.	0,0125	0,210	0,060
2	C-Profil (75mm)+Mineralwolle	0,0750	0,039	1,923
3	Gipskartonplatten I.	0,0125	0,210	0,060
4	Fliesen	0,0100	1,000	0,010
	Wärmeübergangswiderstände			0,260
		0,1100	RT =	2,313
			U =	0.432

IW07	Innenwand Leichtbau (E-Verteiler)			Neubau
IW	A-I, Mehrschalige Trennwand			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonplatten	0,0125	0,210	0,060
2	C-Profil (100mm)+Mineralwolle	0,1000	0,039	2,564
3	Gipskartonplatten	0,0125	0,210	0,060
	Wärmeübergangswiderstände			0,260
		0,1250	RT =	2,944
			U =	0.340

IW08	Innenwand Leichtbau (doppelt beplankt)			Neubau
IW	A-I, Mehrschalige Trennwand			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Gipskartonplatten	0,0125	0,210	0,060
2	Gipskartonplatten	0,0125	0,210	0,060
3	C-Profil (75mm)+Mineralwolle	0,0750	0,039	1,923
4	Gipskartonplatten	0,0125	0,210	0,060
5	Gipskartonplatten	0,0125	0,210	0,060
	Wärmeübergangswiderstände			0,260
		0,1250	RT =	2,423
			U =	0,413

Bauteilliste 1190, Heiligenstädterstraße 93 NEUBAU WOHNHAUS

IW09	Wohnungstrennwand Wohnung/Müllraum			Neubau
WGU	A-I			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Tektalan A2 E-31-035/2 (10,0 cm)	0,1000	0,036	2,778
2	Stahlbeton-Wand	0,1800	2,300	0,078
3	Spachtelung	0,0050	1,400	0,004
	Wärmeübergangswiderstände			0,260
		0,2850	RT =	3,12
			U =	0.321

IW11	Schachttrennwand Leichtbau			Neubau
IW	A-I			
		d [m]	$\lambda \text{[W/mK]}$	R [m2K/W]
1	Knauf Gipskarton Feuerschutzplatte	0,0125	0,250	0,050
2	Knauf Gipskarton Feuerschutzplatte	0,0125	0,250	0,050
3	C-Profil (1000mm)+Mineralwolle	0,1000	0,039	2,564
4	Hygrodicht-S sd > 1500 m	0,0004	0,250	0,002
5	Knauf Gipskarton Feuerschutzplatte	0,0125	0,250	0,050
6	Knauf Gipskarton Feuerschutzplatte	0,0125	0,250	0,050
	Wärmeübergangswiderstände			0,260
		0,1500	RT =	3,026
		•	11 -	0.330

Schicht 3: Der verbleibende Schachtquerschnitt ist vollständig mit Mineralwolle auszufüllen.

IW12	Schachttrennwand El90			Neubau
IW	A-I			
		d [m]	λ [W/mK]	R [m2K/W]
1	C-Profil (50mm)+Mineralwolle (A1)	0,0500	0,039	1,282
2	Knauf Gipskarton Feuerschutzplatte	0,0150	0,250	0,060
3	Knauf Gipskarton Feuerschutzplatte	0,0150	0,250	0,060
4	Knauf Gipskarton Feuerschutzplatte	0,0150	0,250	0,060
	Wärmeübergangswiderstände			0,260
		0,0950	RT=	1,722
			U =	0,581

Schicht 1: Der verbleibende Schachtquerschnitt ist vollständig mit Mineralwolle auszufüllen.